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A B S T R A C T

Since the onset of the Coronavirus Disease 2019 (COVID-19), urban older neighborhoods have faced increased 
vulnerability, prompting research into neighborhood renewal and resilience. However, research on COVID-19 
infection and influencing factors in China’s older neighborhoods remains relatively scarce. This study 
analyzed COVID-19 infections in central Shanghai to identify neighborhood-level factors affecting transmission. 
Using principal component analysis (PCA) and person correlation coefficients (PCC) to process the data, we 
established multiple linear regression (MLR) and geographically weighted regression models (GWR). To explore 
nonlinear relationships, we incorporated the random forest method (RF). Results indicated that older neigh-
borhoods had higher infection rates compared to newer ones. Socioeconomic and built environment factors 
significantly influenced infection rates. Specifically, higher population density, road network density, and the 
number of subway stations were positively correlated with increased infection rates. RF analysis revealed a 
complex, nonlinear relationship between the number of high-income residents and infection rates. This study 
integrates built environment, socioeconomic, and population characteristics factors using multiple modeling 
approaches to better understand their impact on infection rates. It also introduces research on mainland Chinese 
cities as case studies, offering valuable insights for updating older urban neighborhoods to enhance community 
resilience. However, the study did not fully consider the impact of policies at the time, and its findings are 
primarily applicable to older neighborhoods in cities similar to Shanghai. Future research should examine the 
effectiveness of various intervention policies, the long-term effects of neighborhood renewal on community 
resilience, and the applicability of these findings to other urban environments.

1. Introduction

The pandemic that emerged in 2019 and rapidly spread worldwide 
precipitated far-reaching socioeconomic ramifications, including loss of 
life and trade disruptions. As the outbreak spread, there were significant 
changes occurred in people’s behavioral patterns, lifestyles, and work 
practices. In the early stages of the pandemic, various regions imple-
mented lockdowns and restrictive measures, leading to the stagnation of 
economic activities and trade interruptions [1]. Simultaneously, the 
pandemic exposed weaknesses in public health systems and prompted a 
reevaluation and increased attention to urban planning and manage-
ment. Therefore, analyzing and researching the Coronavirus Disease 
2019 (COVID-19), also known as SARS-CoV-2, infection rates in the 

central area is crucial to comprehend the impact of the pandemic on 
urban areas and proposing response strategies that could enhance the 
resilience of neighborhoods.

Urban planning is intricately linked with the proliferation of pan-
demics. Urbanization that resulted from continuous population growth, 
such as housing congestion and inadequate infrastructure, influenced 
disease transmission, particularly among vulnerable populations [2]. 
Infectious diseases spread rapidly with urbanization, current research 
focused on identifying and addressing key influencing factors to enhance 
pandemic prevention capabilities. [3]. In urban environments, certain 
common factors affected the transmission of infectious diseases, 
including population density, hygienic conditions, and transportation 
environments. High population density and frequent interaction of 
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people in places such as housing, public transportation, and offices, 
made it easy for pathogens to spread [4]. While influxes of migrants led 
to poor housing conditions and inadequate sanitation facilities, 
increasing the risk of pandemic outbreaks [5]. Enhancing the resilience 
of urban environments to public health emergencies necessitates 
strengthening not only the built environment but also the socioeconomic 
and cultural domains.

Neighborhood constituted the basic unit of the cities, and the level of 
respiratory infection prevention and control at the neighborhood-level 
affected the overall effectiveness of pandemic prevention and control 
in cities. [6]. Neighborhood resilience referred to the ability of neigh-
borhoods to rapidly adapt, recover, and develop in response to disasters 
or diseases. During the COVID-19 pandemic, neighborhood resilience 
could effectively prevent outbreaks, with rapidly responded as the 
pandemic evolved to minimize cases, and planned with strategies 
tailored for the post-pandemic period. Based on general resilience 
principles, relatively independent multifunctional neighborhoods had 
advantages in enhancing neighborhood resilience [7]. Neighborhoods 
possessed a degree of self-sufficiency, enabling them to meet the resi-
dents’ needs to some extent without being overly affected by external 
changes. Moreover, the multi-functionality of neighborhoods enabled 
them to better address diverse challenges, enhancing adaptability and 
flexibility. Additionally, during the pandemic, residents needed or were 
forced to conduct basic activities such as shopping and recreation at 
home or in the neighborhood, making neighborhoods better equipped to 
deal with special periods and policies [8].

Multiple studies have suggested that COVID-19 infection rates were 
elevated in areas such as slums and ethnic minority communities. This 
trend was primarily attributed to factors including aging infrastructure, 
high population density, and low-income levels. [6,9]. In China, a 
similar scenario occurred with older neighborhoods, constructed before 
the economic reforms, often lagging in keeping pace with modern de-
velopments. Older neighborhoods presented various issues such as small 
living spaces, shared kitchens and bathrooms, and poor living conditions 
and hygiene environments, potentially leading to significant risks of 
virus transmission. Therefore, researching older neighborhoods helps to 
fill in the existing research gaps regarding spatial factors and infection 
rates in China.

This study aims to analyze the relationship between COVID-19 
prevalence and neighborhoods in the central areas of Shanghai, 
exploring the key factors affecting neighborhood resilience to guide the 
renewal of older neighborhoods. Additionally, it provides a dataset of 
COVID-19 samples from neighborhoods in the central urban areas of 
megacities in China, thereby addressing a data gap.

2. Literature review

2.1. Neighborhood resilience regarding COVID-19

Neighborhood resilience refers to the ability of a community to 
endure, adapt, and thrive in the face of various challenges, including 
natural disasters, economic shifts, and social changes [10]. This resil-
ience is built upon several critical factors that contribute to the overall 
robustness and adaptability of the community [11].

Following the outbreak of the COVID-19 pandemic, research on 
enhancing resilience began to focus on preventing epidemic impacts. 
Identifying the influencing factors is crucial for improving neighbor-
hood resilience. The infection rates of diseases could vary significantly 
among different neighborhoods within the same city, due to factors such 
as built environment, socioeconomic status, and population composi-
tion. In terms of the built environment, spatial density-related factors 
including population density, distribution of points of interest, and land 
use, significantly impacted disease transmission [12]. Regarding socio-
economic factors, income and occupation played crucial roles in deter-
mining infection rates [13]. High-income individuals reduced the 
infection rates during pandemics by choosing to work from home or 

commute by private vehicles [14]. For population composition, family 
structure has a significant impact on COVID-19 transmission, with 
crowded households exacerbating pandemic spread [15]. Moreover, 
neighborhoods with a higher proportion of elderly and low-income 
populations experienced an increasing rate of infection risks. In gen-
eral, these studies provided evidence that the built environment, so-
cioeconomic status, and population composition significantly affected 
COVID-19 infection rates in different neighborhoods.

Examining the factors influencing infectious disease transmission 
solely from the perspective of neighborhood resilience was not 
comprehensive, as it lacked an analysis of spatial environment and 
neighborhood behaviors from the viewpoint of disease transmission. 
Therefore, we further investigated the potential impacts of the built 
environment, socioeconomic status, and population composition on 
transmission from the mechanism of infectious disease spread.

2.2. affecting neighborhood resilience examined with SEIR model

The study concluded that understanding the dynamics and mecha-
nisms of the transmission of respiratory infections is a key basis for 
identifying influencing factors. The SEIR model, transmission dynamics 
model widely embraced in the research field, is derived from the SIR 
model. The SEIR model, among the most frequently employed mathe-
matical models for elucidating disease transmission, could act in pre-
dicting transmission scenarios and evaluating intervention effectiveness 
[16]. Following the outbreaks of SARS and COVID-19, many scholars 
used the SEIR model to predict transmission rates, vaccine efficacy, etc. 
[13,17]. However, there were a few studies that employed the SEIR 
modeling to study the factors influencing the spread of infectious dis-
eases, especially at the urban environment level.

Transmission of respiratory infectious diseases is a complex systemic 
process involving various aspects such as populations and environments. 
Research analyzing cities based on the SEIR model allows for the 
delineation of relationships between disease transmission and built 
environment and population, deducing factors influencing disease 
transmission in cities. These factors could be categorized into 
population-level and spatial-level factors. At the population level, the 
study focused on factors such as population characteristics, socioeco-
nomic and infection status. The quality of the population and economic 
conditions affected the probability of susceptible individuals and 
recovered patients contacting and infecting the virus [12]. The infection 
status of individuals or contacts also affected the spread of the virus. On 
the spatial level, key elements included the urban environment, neigh-
borhood environment, and household environment. Urban environ-
mental factors included land use types and transportation networks, 
which had significant impacts on disease transmission. Neighborhood 
environmental factors included green space ratio and building density 
[18,19], which indirectly affected residents’ health by influencing 
physical activity and social interaction [20]. Household environmental 
factors included independent toilets, kitchens, and the number of rooms 
[21,22], which also influenced the transmission of the disease.

2.3. Current research at the neighborhood scale on infectious diseases

Current research at the neighborhood scale on infectious diseases is 
abundant. Fewer studies have considered the interaction of factors 
within cities. Therefore, it is necessary to study multiple factors that 
influence infection transmission rates within the neighborhood scale 
simultaneously. Table 1 summarized the current research at the neigh-
borhood scale, including regions in North America, East Asia, and 
Europe. Typically, studies focused on communities within one or more 
cities or states, reflecting the geographical diversity. In North America, 
mainly in the United States, utilized data focusing on socioeconomic 
factors, built environment, and population characteristics, particularly 
in minority neighborhoods, owing to data availability [23,24]. Research 
in East Asia, predominantly in India, included socioeconomic and built 
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Table 1 
Recent articles on neighborhood-level studies of elements of impact on COVID-19.

Source Research Factors Analysis method Major findings Study area

[25] Type of dwelling, age, sex, family size, years of 
education, floor space per capita, shared toilets, 
etc.

Logistic regression, linear 
regression

Despite crowded living conditions having 
facilitated widespread transmission, the 
variability in prevalence in localities that were in 
geographical proximity indicates a heterogenous 
spread of infection

Pune, India

[27] Social Vulnerability Index (SVI): 
socioeconomic status, household composition, 
and disability, racial or ethnic minority status 
and language, and housing type and 
transportation

Descriptive and Poisson 
regression analyses

People living in the poorest neighborhoods have a 
nearly 40% higher risk of COVID-19 infection

Louisiana, USA

[28] Individual: age, sex, race/ethnicity, preferred 
language, insurance 
ensus tract-level: demographics, insurance, 
income, education, employment, occupation, 
household crowding, and occupancy, built 
home environment, and transportation

linear mixed model At the individual level, age, sex, race, language, 
and type of insurance were associated with the 
likelihood of SARS-CoV-2 infection; at the census 
tract level, population density, household 
occupancy, and education level were also 
associated with the likelihood of SARS-CoV-2 
infection

Massachusetts, USA

[29] Regional deprivation index (ADI), population 
size, age, gender, and ethnic distribution

Descriptive analysis, correlation 
analysis

Socioeconomic characteristics of communities 
seemed to be associated with their susceptibility 
to COVID-19.

Arizona, Florida, Illinois, 
Maryland, North Carolina, 
South Carolina Virginia, 
USA

[24] Built environment: number of dwelling units 
per building and average assessed value (per 
square foot) Economic status of the 
neighborhood: median household income, 
poverty rate, unemployment rate, population 
density, household members (number per 
household), and household crowding 
(percentage of households with >1 person per 
room)

logistic regression model with 
two variables

SARS-CoV-2 transmission among pregnant 
women in New York City has been associated with 
large numbers of family members at the 
neighborhood and building levels, household 
crowding, and markers of low socioeconomic 
status

New York City, USA

[15] Educational disadvantage, unemployment, 
overcrowded housing, mobility and population 
density

Multilevel logistic regression 
model

There was a pattern of socioeconomic inequality 
in the pandemic, and living in areas characterized 
by social and economic disadvantage increased 
the risk of transmission

Milan & Lodi, Italy

[26] Indicators of socioeconomic deprivation: 
occupation, education, median income, median 
rent, unemployment rate and nationality, etc

Spatio-temporal clustering, 
regression modeling

The significantly longer duration of SARS-CoV-2 
clustering in socioeconomically disadvantaged 
communities may also contribute to the increased 
risk of infection in disadvantaged individuals

Geneva, Switzerland

[12] Socio-demographic data: race, gender, age, 
education, income, unemployment, etc. 
Travel behavior data: cars, trucks, vans, cabs, 
buses, motorcycles, subway/elevated rail, 
bicycling and walking 
Built environment data: street connectivity, 
regional auto center index, land use and 
diversity

Poisson regression, spatial 
correlation, descriptive statistics

Auto-oriented built environment design (greater 
auto accessibility) is positively correlated with 
COVID-19 fatality rate. Sedentary (auto) travel is 
associated with a greater COVID-19 fatality rate

Washington, D.C., USA

[30] Census data,Residential buildings and food 
access data,Mobility and transit data

BWQS regression analysis A significant association between social 
disadvantage and new crown pneumonia 
infection and mortality rates

New York City, USA

[14] Housing quality, living conditions, travel 
patterns, race/ethnicity, household income

Multivariate regression model Combined architectural and social environment 
variables were the strongest and most significant 
predictors of COVID-19 deaths. Congestion rate 
resulted in the most significant effect, followed by 
work commute time and the percentage of African 
Americans.

Washington, D.C., USA

[31] Social Vulnerability Index (SVI): 
socioeconomic status, household composition, 
and disability, racial or ethnic minority status 
and language, and housing type and 
transportation

Multivariate negative binomial 
regression

Overall social vulnerability and vulnerability 
themes significantly associated with increased 
COVID-19 case rates

Alabama & Louisiana, USA

[6] Spatial resilience,Capital resilience,Social 
resilience,Governance resilience

Qualitative Comparative Analysis 
(QCA)

Vulnerable, alienated, and inefficient 
communities are three types of communities that 
are less resilient to risk

Wuhan,China

[32] Social Vulnerability Index (SVI): 
socioeconomic status, household composition 
and disability, racial or ethnic minority status 
and language, and housing type and 
transportation

Mixed effects logistic regression 
model

COVID-19 hospitalized patients from socially 
disadvantaged communities showed greater 
disease severity

Michigan, USA

[13] Social Vulnerability Index (SVI): 
socioeconomic status, household composition, 
and disability, racial or ethnic minority status 
and language, and housing type and 
transportation

Pearson correlation analysis, 
distributed lag nonlinear models, 
standard two-stage meta-analytic 
models, machine learning

Environmental factors (e.g., population mobility, 
temperature, and relative humidity) have 
different effects on the spread of COVID-19

Brazil, Brazil
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environment data [6,25]. Conversely, research in Europe were relatively 
scarce, primarily discussing the impact of socioeconomic factors on 
disease transmission [15,26]. Overall, there was a lack of comprehen-
sive studies considering factors such as built environment, socioeco-
nomic status, and population structure, while a few cases studies on 

mainland Chinese cities.
Studies conducted at the neighborhood scale have employed various 

methods to assess factors influencing infectious diseases, which can be 
categorized into three types. The first type comprised descriptive sta-
tistical models, including principal component analysis or Pearson 

Fig. 1. Technical route.
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analysis, multiple regression analysis, and Poisson regression analysis 
[14,30]. The second type involved spatial statistical models, including 
spatial regression models and geographically weighted regression 
(GWR) [33]. The third type encompassed machine learning methods, 
such as random forests and decision trees (Cazzolla [34]). In urban and 
environmental research, multivariate statistical methods extract valu-
able information from extensive urban data to identify key factors [35].

PCC(Pearson Correlation Analysis) and PCA(Principal Component 
Analysis) are commonly used tools for data preprocessing in model 
processing [36]. PCC can identify and eliminate variables that are highly 
correlated and redundant with each other, thereby improving the effi-
ciency and accuracy of the model [37]. PCA can identify variables that 
account for the largest variance in the data, which typically make a 
significant contribution to enhancing the accuracy of predictive models 
[38,39].

Descriptive statistical models can capture the contribution of various 
influencing factors. However, both the PCC-MLR(Pearson Correlation 
Analysis-Multiple Linear Regression) and PCA-MLR (Principal Compo-
nent Analysis-Multiple Linear Regression)models operated under the 
assumption of linear relationships between variables. [40]. The rela-
tionship between various variables in the city and disease infection rates 
may resulted in a more complex non-linear relationship, therefore, a 
machine learning approach was needed to accurately capture the com-
plex associations [41].

Random forest is a commonly used method in machine learning 
modeling, widely applied in research related to urban planning [42,43]. 
This technique is a data mining practice based on random sampling 
learning, incorporating random feature selection. Random forests offer 
several advantages, including high accuracy, avoidance of overfitting, 
and moderate complexity [44]. Additionally, they can internally 
generate out-of-bag accuracy estimates to assess model performance and 
return evaluations of the importance of input variables.

Despite numerous studies on infectious disease transmission, rare 
studies had considered the interaction of multiple factors within cities, 
and fewer had used large cities in mainland China as case studies. To fill 
the gap in neighborhood-level infectious disease research, this study 
aimed to identify the neighborhood-scale factors influencing COVID-19 
transmission by employing various statistical methods to explore 
infection patterns and influencing factors at the neighborhood level. 
This study addressed two key questions: whether morbidity is higher in 
older neighborhoods? Second, what are the factors that influence the 
spread of infectious diseases at the neighborhood level? The findings 
were crucial for developing effective neighborhood renewal and 
pandemic prevention policies, providing references for renewal strate-
gies in older neighborhoods. Furthermore, the methods used in this 
study could be applied to other cities similar to Shanghai worldwide, 
aiding in the formulation of effective response policies and the coherent 
allocation of urban resources.

3. Materials and methods

This study applied a multi-method approach to explore infection 
patterns and influencing factors at the neighborhood level, and the 
research process is outlined in Fig 1.

For the first research question, whether morbidity is higher in older 
neighborhoods, the investigation focused on whether morbidity rates 
are higher in older neighborhoods. Data visualization and correlation 
analysis were employed to systematically compare infection rates across 
neighborhoods constructed during different periods. This approach 
facilitated the identification of spatial clustering trends and outbreaks 
within the study area.

For the second research question, the study examined factors influ-
encing the spread of infectious diseases at the neighborhood level, 
focusing on socioeconomic, built environment, and population charac-
teristics. Principal Component Analysis (PCA) and Pearson Correlation 
Coefficient (PCC) were used to analyze these factors. Multiple Linear 

Regression (MLR) models were then employed to assess linear re-
lationships between these factors and infection rates within the research 
area.

In summary, this study employed these two methods for data pro-
cessing in conducting multiple linear regression analysis. PCC-MLR and 
PCA-MLR are capable of thoroughly exploring the linear relationships 
between variables. Considering the effect of spatial autocorrelation, this 
study used GWR to study the effect of spatial geographic factors and 
visualized the results of the GWR model. Additionally, to further 
investigate the nonlinear relationships between variables, the study 
employed RF methods for analysis. Case comparisons of typical neigh-
borhoods were made to corroborate model results and validate study 
findings, identifying key factors such as population density, road 
network density, land use mix, income levels, and housing prices. The 
detailed research methodology and data processing methods were 
shown in the Chapter 3.3.

3.1. Study area

Downtown Shanghai, China, was chosen as the research area for two 
reasons: (1) Shanghai, as an international metropolis with a dense 
population and developed economy, possesses unique urban character-
istics and complex population mobility patterns, making it an ideal 
subject for study. (2) Shanghai has relatively abundant data, compared 
to other cities, providing a reliable foundation for research.

The urban structure of Shanghai is delineated into three zones based 
on ring roads: the Outer Ring, Middle Ring, and Inner Ring areas. The 
Outer Ring connects urban and suburban areas, promoting satellite town 
growth with its abundant land and lower housing prices, characterized 
by industrial parks and logistics centers. The Middle Ring, developed 
from the 1980s onwards, features residential neighborhoods, business 
districts, and industrial parks, with lower housing prices and spacious 
living environments. The Inner Ring, the earliest developed zone, forms 
the city’s core with dense skyscrapers, prosperous commercial activities, 
and higher housing prices. These three rings collectively foster Shang-
hai’s coordinated growth. The study area of this research is located in 
downtown Shanghai, specifically within the area bounded by the Outer 
Ring of Shanghai. Due to the lack of available data for Yangpu District 
during the pandemic, Yangpu District is not considered in this study.

As shown in Fig. 2, there are 2255 neighborhood1 in the study area. 
In this study, older neighborhoods referred to those built between year 
of 1960 to 1999 (before the prevalence of commercial housing), while 
emerging neighborhoods referred to those built between year of 2010 to 
2019.

The study period ranged from March 1st to May 31st, 2022, more 
than 11,000 cases were reported during the study period. The devel-
opment of the pandemic in Shanghai could be summarized in four 
phases (Fig 3), The incubation period of the pandemic (March 1st 
− 31st), the outbreak stage of the pandemic (April 1st − 28th), the 
pandemic control and management stage (April 29th -May 31st), and the 
period of returning to normal life (June 1st -present). During the 
outbreak stage, the number of infections steadily increased, and the data 
was more spontaneous because citywide nucleic acid screening was not 
conducted. By April 1st, there was a cumulative total of 1809 locally 
confirmed infections and 41,384 asymptomatic infections. During the 
control and management stage, the pandemic was further brought under 
control, normalized prevention and control were gradually promoted, 
the number of newly diagnosed cases continued to decline, and some 
districts and counties achieved a social surface of zero cases. On June 
1st, work resumed at full capacity in Shanghai, and the situation of the 
pandemic was stable to favorable. Given the decisive role these three 
phases played in the evolution of the pandemic, they were chosen as the 
focus of this study.
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3.2. Modeling methods

This study employed a variety of modeling methods, including data 
processing methods, linear regression models spatial analysis methods, 
and machine learning methods. The study used a simple linear regres-
sion and plotted box plots to explore the relationship between the year of 
building at each neighborhood and the rate of infection in the neigh-
borhood. Data visualization visualized a comparative assessment of 
infection trends in different neighborhoods and revealed spatial clus-
tering patterns and outbreaks. Correlation analysis and box plots 
assessed whether older neighborhoods were more susceptible to infec-
tion than newer neighborhoods. The study found that the year the 
neighborhood was built was negatively related to the infection rate, and 
older neighborhoods were more susceptible to infectious diseases to 
newer neighborhoods.

To further explore the relationship between other variables and 
infection rate, the independent variables were processed by using PCA 

and PCC, and two sets of models were constructed: PCA-MLR model and 
PCC-MLR. Meanwhile, the independent variables included demographic 
characteristics, built environment, and socioeconomics, and the 
dependent variables, which referred to the number of cases, per capita 
incidence rate, and geographic average incidence rate, respectively. By 
comparing the results of PCA-MLR and PCC-MLR, the study found that 
PCC-MLR had a better degree of explanation.

Based on the results of PCC-MLR, the study built a GWR model to 
visualize the spatial and temporal distribution of the results, and 
considering the complexity of the city and the possible nonlinear rela-
tionship between the influencing elements and the infection rate, the 
study also introduced a RF for analysis. Random forest, widely used in 
urban planning research, is a data mining technique that offers high 
accuracy, avoids overfitting, and evaluates input variable importance, 
making it ideal for studying factors impacting urban areas.

In addition, typical neighborhoods were selected for case compari-
sons to explore in depth whether there were specific factors affecting 

Fig. 2. Map of the scope of the study neighborhood in downtown Shanghai.

Fig. 3. Incidence of COVID-19 in Shanghai.
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their incidence rates, and to further validate the reliability of the study 
results, corroborating with the findings from the model analysis. 
Through these analyses, the study identified several key factors that 
influence neighborhood infection rates, including population density, 
road network density, land mix (land mixing degree), number of high- 
income people, and housing prices.

3.3. Model setting

3.3.1. Dependent variable
The dependent variables included the total number of cases in 

neighborhoods, per capita infection rate, and per area infection rate. The 
total number of cases was the cumulative number of positive reports in 
the neighborhood during the study period. The per capita infection rate 
was calculated using the total number of people in the plot as the de-
nominator and the cumulative number of people reporting positive as 
the numerator. The per-area infection rate was calculated using the total 
area of the neighborhood as the denominator and the cumulative 
number of reported positive cases as the numerator.

The data were sourced from the official WeChat account of the 
General Office of the Shanghai Municipal People’s Government and 
reports published by Shanghai.These reports provided daily updates on 
the number of new infections and the residential addresses of infected 
individuals. The study used Baidu Maps to convert these geographic 
addresses into spatial coordinates, obtaining spatial locations for each 
infected individual. Subsequently, the total number of infected people in 
each neighborhood within the Outer Ring were calculated over a three- 
month period.The data of the population living in the neighborhood was 
generated using Baidu Maps Urban Population Geographic Big Data 
Platform.

3.3.2. Independent variables
Based on the SEIR model and previous studies, three categories of 

indicators were screened, demographic characteristics, socioeconomic, 
and built environment, where the built environment includes the urban 
environment, neighborhood environment, and household environment. 
Indicators related to demographic characteristics and the built envi-
ronment were related to the probability of infection in the population, 

Table 2 
Types of variables used in the study.

Category Source Name Meaning Mean STD

Built Environ-ment OSM Road_Densi Road Network Density 0.11 0.04
G_area Green Space Area 4.43 506,681.75
SiteMix Land Mixing Degree 0.8 0.25
FAR Floor Area Ratio 2.46 1.46
build_area Building area 0.06 48,014.86
AREA Land Area 0.03 24,557.92
Medical_Services Number of medical service facilities 50 28.77
Leisure Number of leisure facilities 195 88.9
Education Number of educational facilities 12 4.84
Shopping Number of shopping facilities 520 288.53
Public_Tranportation Number of public transport facilities 33 7.27
Metro Number of subway facilities 2 1.42
Dining Number of Food and Beverage Establishments 271 151.87

Socioeco-nomic Baidu Maps Urban Population Geography Big 
Data Platform,anjuke,

Income_Lv_2499 The monthly income is less than 2499 yuan 40 37.3
Income_Lv_20,000 The monthly income is more than 20,000 yuan 143 124.69
Low_consumption Low consumption level 364 305.45
High_consumption High consumption level 372 303.79
Owns_Car Own a car 419 420.11
POPdens Population density 32,240 0.01

Anjuke website T_price Total Property Price 707.6 477.96
P_price Price per Square Meter of Housing 75,157 25,040.39
floor Number of Floors 11 8.08
room Number of Rooms 4 1.51

Shanghai 1% Population Sample Data 2015 Kitchen Have a separate kitchen (2), shared kitchen (1), no kitchen (0)
Toilet Have a separate toilet (2), share a toilet with others (1), no toilet (0)

Populati-on 
Character-istics

Baidu Maps Urban Population Geography Big 
Data Platform

F_18 Number of Individuals Under the Age of 18 10 9.7
F55_64 Number of Individuals aged 55–64 104 91.65
F__65 Number of Individuals Over the Age of 65 72 62.86
High_School_Below Education Level High School or Below 622 511.39
Bachelor_s_Degree__above Education Level Bachelor’s Degree or Higher 126 115.08
OCH Occupational Heterogeneity 1.19 0.06
High_School_Student Number of Individuals in High School Stage 49 43.78
College_Student Number of Individuals in College Stage 20 19.83
Graduate_Student Number of Individuals in Graduate School 

Stage
4 6.2

Pregnancy_Period Number of Individuals in Pregnancy Stage 24 24.24
Parenting_Stage Number of Individuals in Child-Rearing Stage 1 2.69
Pregnant_at_Home Number of Individuals with Pregnant Women at 

Home
16 16.91

Has0_1YearOld Number of Individuals with Children Aged 0–1 
at Home

51 47.44

Has1_3YearsOld Number of Individuals with Children Aged 1–3 
at Home

32 31.5

Has3_6YearsOld Number of Individuals with Children Aged 3–6 
at Home

85 75.28

Has_Young_Children Number of Individuals with Elementary School 
Students at Home

341 286.12

Has_Elementary_Children Number of Individuals with Middle School 
Students at Home

119 103.59

Has_HighSchool_Children Number of Individuals with High School 
Students at Home

69 59.62
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and indicators related to the built environment were related to the 
spread of the virus.

Built environment data including vector road network, neighbor-
hood contour data, and green space data were from OpenStreetMap, and 
facility POI data such as medical services were from 2020 Baidu map 
web crawling. Socioeconomic data including the number of rooms, 
number of floors, and house prices were from the 2020 Anjuke website, 
kitchen and toilet ownership were from the Shanghai 2015 1% popu-
lation sample data, income level and consumption level were from the 
Baidu Maps Urban Population Geo-Big Data Platform. Data on de-
mographic characteristics including age, education, and occupational 
composition were from the Baidu Data Urban Population Geography Big 
Data Platform. The variables were shown in Table 2.

3.3.3. Data pre-processing
First, in order to investigate the relationship between the age at 

which the neighborhood was built and the infection rate, the data were 
grouped according to the age at which the neighborhood was built. Each 
decade was grouped into six groups of neighborhoods with completion 
years from 1960 to 2019, thus observing the infections in neighborhoods 
with different completion years.

Secondly, the data were screened to ensure the accuracy of data 
analysis. After the correlation was found between the age of completion 
and the infection rate, modeling analysis was conducted in order to 
explore the influencing factors affecting the infection situation in the 
neighborhood. In order to guarantee the accuracy of the data, the var-
iable data were tested for normal distribution, data other than three 
times the standard deviation were filtered to remove extreme values, 
and the dependent variable was logarithmically processed, and finally 
1699 samples were retained to construct the model. In the subsequent 
research model, in order to improve the accuracy and explanatory power 
of the model, the built-up era element was excluded and attention was 
focused on other potential factors such as demographic characteristics, 
socioeconomic factors and built environment.

The study adopted different variable screening methods for different 
models. For the PCA-MLR, the study obtained a total of seven new 
components by PCA, and the new components were renamed according 
to their main constituents (the first five) for clear discrimination. As 
shown in Table 3 For the PCC-MLR and RF, the study analyzed the 
correlation of variables to prevent multicollinearity. When the PCC 
value was greater than 0.8, the variable see was considered to be 
strongly correlated and only one comparison variable was retained. 
After filtering, 19 variables were selected for the final model, as shown 
in Fig. 4. For the RF model, the study selected 80% of the data as the 
training dataset, while the remaining 20% was used as the test dataset to 
verify the model fit by comparing the R2 and Mean Square Error (MSE). 
On the training set, R2 = 0.95, MSE = 0.071. On the test set, R2 = 0.63, 
MSE = 0.506. The model was considered to be a good fit, and on the test 
set there was an error, but it was within the acceptable range, so the 
model was able to capture the features of the training data.

In order to identify the independent variables that have a significant 

effect on the dependent variable, we used forward stepwise multiple 
regression. In order to obtain the best model where all variables have a 
significant effect on the dependent variable, we added variables one by 
one. F-tests were performed on the new variables introduced, while the 
existing variables were subjected to t-tests, and the variables that would 
no longer be significant would be eliminated. This process was repeated 
until there were no significant variables to model and all non-significant 
independent variables had been eliminated from the regression equa-
tion. The study used SPSS, GWR4, and python for data cleaning and 
modeling, and Geographic Information System (GIS) was used to 
analyze and visualize the results.

4. Results

4.1. Distribution of COVID-19 neighborhoods

According to the COVID-19 dataset of Shanghai, as of May 30th, 
2022, the cumulative number of confirmed positive cases exceeded 
70,000 cases. The map of the year of built of the neighborhoods and the 
map of neighborhood infection rates (Fig. 5) showed that neighborhoods 
generally concentrated in the central Huangpu, Jing’an, Xuhui and 
Hongkou districts, while neighborhood’s within the peripheral admin-
istrative districts of Putuo, Changning, Minhang and Baoshan districts 
had lower infection rates. Neighborhoods along the river also had higher 
infection rates, and most of the neighborhoods with high infection rates 
had smaller land areas.

Linear regression analyses were performed on the year of plot con-
struction and per area infection rate. The adjusted R2 = 0.104 and 
standardized coefficient of − 3.23 showed that the year of plot con-
struction was negatively correlated with the infection rate, indicating 
that the older the building, the higher the infection rate in the plot.

Further analysis using box plots (Fig. 6) showed that older neigh-
borhoods were more susceptible to infectious diseases relative to 
emerging neighborhoods, and the data of older neighborhoods have 
greater volatility. On the one hand, the median of the older neighbor-
hoods resulted higher rate than the emerging neighborhoods in all three 
data sets, which indicated that the older neighborhoods were more 
impacted by infectious diseases than the emerging neighborhoods in 
three aspects: total cases, per capita infection rate, and per area infection 
rate. Emerging neighborhoods have a higher concentrated total, per 
capita infection rate, and per area infection rate, while older neigh-
borhoods have longer box lengths. The box plots suggested greater 
volatility and more extremes in the data for older neighborhoods, which 
reflected the greater challenges and uncertainties faced by older 
neighborhoods in responding to outbreaks.

4.2. PCA-MLR modeling results

As shown in Table 4, in Model 1–1, where the dependent variable 
was the total number of cases in the neighborhood, the model included 
six factors and the adjusted R2 was 0.281. In Model 1–2, where the 
dependent variable was the per capita infection rate in the neighbor-
hood, the model included four factors and the adjusted R2 was 0.510. In 
Model 1–3, where the dependent variable was the per-area infection rate 
in the neighborhood, the model included six factors and the adjusted R2 

was 0.577. It could be demonstrated that Model 1–3 have the best result. 
In the overall three models, factors 1, 2, 3, and 7 had positive effects on 
all three dependent variables simultaneously. Among them, factor 7 has 
a higher degree of influence on the dependent variable, and factor 1 has 
the lowest degree of influence.

4.3. PCC-MLR modeling results

The 19 variables data PCC-MLR model and the results are shown in 
Fig. 4 and Table 5. In Model 2–1, where the dependent variable was the 
total number of cases in the neighborhood, the model included ten 

Table 3 
Selected variables for PCA-MLR modeling.

Name variant

Factor 1: Socioeconomic High_School_Below,Owns_Car,Low_consumption, 
High_consumption,Has_Elementary_Children

Factor 2: POI Shopping,Dining,Leisure,Medical_Services, 
Road_Densi

Factor 3: Income level T_price,room,P_price,build_area,POPdens
Factor 4: Kitchen and Toilet Toilet,Kitchen,Metro,Public_Transportation, 

Shopping
Factor 5: Public 

Transportation
Public_Transportation,Education,POPdens,FAR, 
floor

Factor 6: Neighborhood 
Environment

G_area,FAR,floor,OCH,POPdens

Factor 7: Urban Mix Metro,SiteMix,Graduate_Student,OCH,room,P_price
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factors, and the adjusted R2 was 0.340. In Model 2–2, where the 
dependent variable was the per capita infection rate in the neighbor-
hood, the model included 13 factors, and the adjusted R2 was 0.545. In 
Model 2–3, where the dependent variable was the per-area infection rate 
in the neighborhood, the model included 13 factors, and the adjusted R2 

was 0.624. Overall, nine variables were included in all three models 
simultaneously. Among these, only the variable floor exhibited a nega-
tive correlation with all three dependent variables.

Based on the observations from Table 5, it was revealed population 
density, the number of subway stations, and the number of people with a 

Fig. 4. Results of Pearson analysis.

Fig. 5. Shanghai city center by neighborhood (a: Year of construction, b: Neighborhood prevalence rate).

Fig. 6. Infections in neighborhoods by age of completion.
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monthly income higher than 20,000 yuan have a high correlation with 
the number of cases and the infection rate, respectively. For Model 2–1, 
the highest degree of influence was found in population density, fol-
lowed by the number of metro stations and the number of people with a 
monthly income of less than 2499 yuan, all of which were positively 
correlated with the total number of cases. For Model 2–2, the highest 
level of influence was the number of people with a monthly income 
higher than 20,000 yuan, which was negatively correlated with the per 
capita prevalence rate, followed by the number of subway stations, 
which was positively correlated with the prevalence rate. For Model 
2–3, population density and the number of metro stations were posi-
tively correlated with the per-area infection rate, and the number of 
people with a monthly income higher than 20,000 yuan was negatively 
correlated with the per-area infection rate. In the Model 2–2 and the 
Model 2–3, the number of subway stations was positively correlated 
with infection while the number of bus stops was negatively correlated 
with the infection rate, which might be because of the discontinuation of 
some bus routes as a result of the policy at the time.

The PCA-MLR and PCC-MLR models shared several indicators. 
Firstly, socioeconomic factors, especially population density and the 
price per square metre of housing in the neighbourhood, showed a 
positive correlation with infection. Second, the number of metro stations 
in the built environment also increased the infection rate to some extent.

4.4. GWR modeling results

Due to the presence of spatial dependence and spatial autocorrela-
tion, neglecting the spatial relationship in the analysis of COVID-19 
would diminish the accuracy of the model. Therefore, to ascertain the 
spatial distribution of the variables, the study established a GWR model 
(using first-order QUEEN to construct the spatial weight matrix) based 
on the findings of the PCC-MLR model. As depicted in Table 6, in Model 
3–1, the adjusted R2 was 0.442 when the dependent variable was the 
total number of cases in the neighborhood. In Model 3–2, the dependent 
variable was the per capita infection rate in the neighborhood, and the 
adjusted R2 was 0.625. In Model 3–3, the dependent variable was the 
per-area infection rate in the neighborhood, and the adjusted R2 was 
0.693. Because the GWR model is one coefficient per polygon, these 
coefficients will have a maximum, minimum, and mean, and the mean 
and standard deviation of the coefficients are provided in the table.

Combining the previous models, the model had the most significant 
level of explanation when the dependent variable was the per area 
infection rate, thus the results of Model 3–3, which contained a total of 
13 factors, were visualized and analyzed. As shown in Fig. 7, according 
to the Standardized Residual (Std. Resid) plot, most communities were 
within 2.5 standard deviations, indicating that the model fitted better. 
According to the Local R2 plot, the low value aggregation area appeared 
in the center of the region, around the low value aggregation area from 
the inside to the outside of the trend of increasing and decreasing. In the 
southern part of the region, the high value aggregation area appeared on 
both sides of the river. Based on the local R2 plot, areas with low values 
were clustered within the inner ring and the outer ring, while the status 
of clustering was indicated around the middle ring. And high-value 
clusters were also present in the southern part of Pudong District.

The spatial distribution of the coefficients of the 13 factors included 
in Model 3–3 is illustrated in Fig. 8, where the population density and 
road network density shown a significant positive correlation, and the 
number of people with a monthly income of less than 2499 yuan resulted 
in a negative correlation with the number of neighborhood floors, total 
neighborhood house price, average neighborhood house price, and land 
mix. In addition, the coefficients of the number of subway stations, land 
mix, and floor area ratio shown large spatial variations.

4.5. RF modeling results

The RF model was chosen to model the rate of infection per unit area 
as the dependent variable and the independent variables as the 19 
variables that passed the correlation test. Five major influencing factors 
were eventually derived (showen in Fig. 9), including Number of 

Table 4 
PCA-MLR modeling results.

Model 1–1: Total 
number of cases

Model 1–2: 
Per capita 
infection rate

Model 1–3: 
per area 
infection rate

Variable Stand Sig. Stand Sig. Stand Sig.

(Constant) 0.018 <0.001 0.019 <0.001 0.02 <0.001
Factor 1: 
socioeconomic

0.004 <0.001 0.004 <0.001 0.004 <0.001

Factor 2: POI 0.009 <0.001 0.009 <0.001 0.009 <0.001
Factor 3: Income level 0.011 <0.001 0.011 <0.001 0.012 <0.001
Factor 4: Kitchen and 
Toilet

0.013 0.045    <0.001

Factor 5: Public 
transportation

    0.016 <0.001

Factor 6: 
Neighborhood y 
Environment

0.016 <0.001   0.017 <0.001

Factor 7: Urban Mix 0.017 <0.001 0.018 <0.001 0.018 <0.001
Adjusted R square 0.281 0.51 0.577

Table 5 
PCC-MLR model results.

Model 2–1: 
Total number of cases

Model 2–2: 
Per capita infection rate

Model 2–3: 
per unit area infection rate

Variable beta sign beta sign beta sign

Intercept  0.630  <0.001  <0.001
POPdens 0.290 <0.001 0.043 0.032 0.332 <0.001
Metro 0.288 <0.001 0.229 <0.001 0.210 <0.001
Income_Lv_2499 0.246 <0.001 − 0.109 <0.001 − 0.089 <0.001
Education 0.142 <0.001 0.155 <0.001 0.146 <0.001
Medical_Services 0.090 <0.001 0.125 <0.001 0.111 <0.001
floor − 0.087 0.001 − 0.064 0.004 − 0.063 0.002
OCH 0.061 0.004    
Per_Meter_price 0.060 0.014 0.080 <0.001 0.068 0.001
Income_Lv_20,000 0.102 0.001 − 0.357 <0.001 − 0.312 <0.001
FAR − 0.056 0.046 0.079 0.001 0.077 <0.001
Total_price   − 0.071 0.003 − 0.083 <0.001
Road_Densi   0.073 0.001 0.070 0.001
SiteMix   0.062 0.001 0.052 0.003
Public_Transportation   − 0.048 0.023 − 0.044 0.022
Adjusted R square 0.340 0.545 0.624
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persons with a monthly income of more than 20,000 yuan, population 
density, road network density, the number of metro stations around the 
neighborhood, and the number of healthcare service facilities. The 
model demonstrated strong concordance, specifically, the R-squared of 
the model was 0.63, which indicated that the model explained 63% of 
the variance in the target variables. the Income_Lv_20,000 feature had 
the highest weight, accounting for 25.89%, and played a critical role in 
the model. Following closely was the POPdens feature, which accounted 
for 20.32%, also playing an important role in the model construction. 
Additionally, the Road_Densi feature had a significant weight of 18.83%. 
In contrast, the Medical_Services and Metro features had lower weights, 
accounting for 4.40% and 3.85%, respectively. Nevertheless, these five 
features collectively accounted for 73.30% of the total weight, signifi-
cantly impacting the model’s construction.

Since the R2 value of the random forest model was significantly 
higher than that of the PCA-MLR, PCC-MLR, and GWR models, the study 
suggested that these RF models offered a better fit, indicating that there 
might have been nonlinear relationships between the influencing factors 
and the infection rate. Some variables exhibited similar behavior in both 
linear and nonlinear models. Population density, road network density, 
and the number of subway stations showed a significant positive cor-
relation in both linear models and the random forest model. Meanwhile, 
the number of people with a monthly income exceeding 20,000 yuan 
and the number of medical facilities around the residential area dis-
played higher correlations in the random forest model, suggesting that 
these two variables had a nonlinear relationship with the infection rate.

As shown in the partial dependence plots (PDP) in Fig. 10, the 
nonlinear relationships between the variables and the infection rate 

were evident. Variables related to the built environment and socioeco-
nomic factors exhibited significant nonlinear patterns. Among the built 
environment variables, the PDP curves for Road Density, G_area, and 
Public Transportation displayed nonlinear trends. Road Density showed 
a monotonically increasing relationship, indicating that areas with 
denser road networks, due to improved accessibility, experienced 
increased human mobility and higher transmission risks. G_area 
demonstrated a fluctuating pattern, initially decreasing and then 
increasing, while SiteMix showed a linear upward trend, suggesting a 
positive effect of mixed land use on the target variable. For socioeco-
nomic variables, Medical Services, Education, POPDens, and T_price 
exhibited diverse and segmented patterns in their PDPs. The PDP for 
Income_Lv_20,000 revealed that as the proportion of high-income pop-
ulations increased, the infection risk declined sharply. In contrast, the 
PDP for POPDens showed a strong positive correlation, indicating that 
densely populated areas were high-risk zones for infection transmission.

These results suggested that the effects of these factors on the inci-
dence of infectious diseases were significant at the neighborhood-level 
in the center of Shanghai. Population density, road network density, 
and the number of healthcare facilities might reflect the mobility of 
people, transportation, and the distribution of healthcare resources in 
the neighborhood, which were closely related to the spread of infectious 
diseases. In addition, the plot ratio of the neighborhoods and the number 
of metro stations around the neighborhood reflected the density of 
buildings and accessibility within the neighborhoods, which also 
resulted in a significant impact on the neighborhood morbidity rate.

Table 6 
GWR model results.

Model 3–1: 
Total number of cases

Model 3–2: 
Per capita infection rate

Model 3–3: 
per area infection rate

Variable Mean STD Mean STD Mean STD

Intercept 0.368 0.963 − 3.722 0.588 − 8.233 0.594
POPdens 20.451 6.587 3.189 7.115 34.118 7.519
Metro 0.116 0.114 0.116 0.097 0.127 0.105
Income_Lv_2499 0.008 0.003 − 0.002 0.002 − 0.002 0.002
Education 0.025 0.026 0.026 0.026 0.028 0.029
Medical_Services 0.005 0.004 0.005 0.005 0.005 0.005
floor − 0.007 0.012 − 0.006 0.009 − 0.008 0.01
OCH 1.102 0.695    
Per_Meter_price <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
Income_Lv_20,000 <0.001 <0.001 − 0.004 0.001 − 0.004 0.001
FAR − 0.068 0.076 0.041 0.045 0.043 0.05
Total_price   <0.001 <0.001 <0.001 <0.001
Road_Densi   4.26 3.159 4.534 3.216
SiteMix   0.298 0.566 0.27 0.625
Public_Transportation   − 0.009 0.018 − 0.01 0.018
Adjusted R square 0.438 0.625 0.693

Fig. 7. Visualization of Model 3–3 results.
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4.6. Comparison of typical neighborhoods

In this study, some older and emerging neighborhoods were selected 
for comparative analysis in each of the outer, middle, and inner rings of 
Shanghai to further investigate the impact of socioeconomic and de-
mographic characteristics on the transmission of infectious diseases. 
Each neighborhood selected for comparison was geographically close to 
each other to ensure the consistency of the surrounding environment 
and the implemented pandemic prevention policies (shown in Table 7).

After the fieldwork, it was observed that the older neighborhoods 
generally presented a lower floor structure, usually six floors. The 
spacing between these buildings was relatively small, resulting in a high 

density distribution of buildings with relatively little green area or plaza 
space. The distinguishing feature of this environment was clutter and the 
frequent movement of people within the neighborhood, which pre-
sented an open neighborhood pattern. In contrast, the emerging neigh-
borhoods mainly used high-rise buildings as the main structure, and 
there was a wealth of green space and activities within the district, 
providing residents with places for recreation and leisure, but also 
improving the overall environment of the district. These Emerging 
neighborhoods also paid higher attention to the rational layout of the 
main and secondary entrances in planning, so that the entrances and 
exits of the neighborhood have been clearly and effectively divided.

Comparing the three groups of neighborhoods (Table 8), data 

Fig. 8. GWR coefficients for variables in Model 3–3.
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analysis revealed that, with similar built environment factors, older 
neighborhoods had higher total case numbers, cases per unit area, 
average neighborhood cases, and per capita cases than emerging 
neighborhoods. Additionally, older neighborhoods located in the middle 
ring had more severe infection rates compared to those in the inner and 
outer rings. The results indicated that higher population density, a larger 
elderly population, and lower educational attainment levels might have 
increased the risk of disease infection. Socioeconomically, having more 
rooms and higher household incomes were beneficial in reducing the 
incidence rate.

5. Discussions

The study initially employed regression models to analyze the rela-
tionship between the construction period of neighborhoods and the 
infection rate of diseases. It was found that there was a negative corre-
lation between the construction period and the infection rate, indicating 
that older neighborhoods were more susceptible to diseases compared to 
emerging ones. This result supported research on building age and 
infection rates, with previous studies finding that historic buildings 
present higher infection rates than apartments [45]. Complemented by 
analyses of typical neighborhoods, factors such as the long construction 
period, fewer rooms, a higher proportion of elderly residents, lower 
average income, and lower education levels in older neighborhoods 
contributed to their higher vulnerability to infectious diseases [29,46].

To further explore the factors influencing COVID-19 transmission at 
the neighborhood level, a range of modeling approaches was employed, 
including traditional regression models (PCA-MLR, PCC-MLR), a spatial 
statistical model (GWR), and a machine learning method (Random 
Forest, RF). The results from these models highlighted key differences in 
their ability to capture the complexity of the relationships between 
various neighborhood characteristics and infection rates.The traditional 
regression models (PCA-MLR and PCC-MLR) identified linear relation-
ships between socioeconomic factors, such as population density and 
housing prices, and infection rates. However, these models were limited 

in their ability to capture more complex, nonlinear interactions. In 
contrast, the Random Forest model, with its significantly higher R² 
value, demonstrated a better fit and revealed nonlinear relationships, 
such as stronger associations between residents’ income and medical 
facility density with infection rates. The GWR model, which accounts for 
spatial heterogeneity, provided localized insights into the variation in 
the strength of relationships across neighborhoods, but still relied on 
linear assumptions.

Both linear and nonlinear models consistently highlighted the 
importance of factors such as population density, road network density, 
and the number of subway stations in explaining infection rates. How-
ever, the Random Forest model additionally identified variables such as 
the proportion of residents earning over 20,000 yuan per month and the 
density of medical facilities as having stronger and more intricate as-
sociations with infection rates. These findings underscore the need for a 
combination of linear and nonlinear modeling approaches to fully cap-
ture the complexity of neighborhood-level factors influencing disease 
transmission, offering a more comprehensive understanding of the un-
derlying dynamics.

At the level of the built environment, the study revealed that road 
network density and land-use mix were critical factors affecting disease 
transmission. Road network density and the number of metro stations 
were positively correlated with the infection rate, as areas with higher 
road network density are often located in bustling districts with more 
public transport stations, leading to increased population mobility and 
contact, thus elevating the risk of infection [47]. Land-use types influ-
enced residents’ activity intensity, frequency, and duration, thereby 
impacting residents’ health [48]. Properly increasing land-use mix, 
green space, and outdoor recreational areas, optimizing urban land use, 
and spatial layout were conducive to reducing the risk of infection [33]. 
An unexpected finding was that a higher number of medical facility 
points led to a higher infection rate, as individuals tended to visit these 
places for medical services after infection, thereby increasing the risk of 
cross-infection. Therefore, when old neighbourhoods are renovated, it is 
essential to enhance the infrastructure of older neighborhoods. This 

Fig. 9. SHAP value (impact on model output).
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includes improving building ventilation and lighting systems, adding 
independent bathrooms and kitchens, and optimizing building density 
and internal space to enhance the community’s ability to prevent dis-
ease. Additionally, it is necessary to consider the location conditions of 
the neighborhood, planning public facilities and transportation infra-
structure appropriately. During an outbreak, selectively closing certain 
facilities to limit the flow of people while not affecting residents’ daily 
lives is crucial.

The socioeconomic dimension affected the infection rate in a number 
of ways, mainly related to factors such as population density, per capita 
income, and house prices. Results from PCC-MLR and RF analyses 
indicated a positive correlation between population density and the 

infection rate. However, GWR coefficient maps revealed a significant 
positive correlation between population density and the infection rate in 
suburban areas, gradually diminishing closer to the city center. While 
direct control of population density may not be feasible, it is possible to 
reduce population density in local areas by rationally planning com-
munity spaces, such as increasing green spaces, parks, etc., and opti-
mizing residential layout. This may also reduce the risk of infection. In 
terms of income and housing prices, the number of individuals with a 
monthly income exceeding 20,000 yuan and the housing prices in 
neighborhoods were negatively correlated with the infection rate, 
corroborating findings from previous studies on the association between 
disease spread and economic inequality [24]. It is recommended that 

Fig. 10. Partial dependence plots.
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neighborhoods implement strategies to promote residents’ employment 
and entrepreneurship while enhancing their income levels. For example, 
initiatives could include creating additional job opportunities, providing 
vocational training programs, or offering support for small and micro 
enterprises as well as entrepreneurial ventures. In neighborhoods 
renewal plans, it is recommended to introduce different types of hous-
ing, including detached houses, apartments, and social housing. This 

approach can help disperse population density and provide more 
housing options. Adjusting the proportion of various types of housing 
within residential areas to balance income distribution and reduce so-
cioeconomic disparities is also advised to decrease the concentration of 
high-risk groups. Furthermore, implementing monetary subsidy policies 
for low- to middle-income groups, particularly during epidemic periods, 
can improve residents’ income levels and enhance their ability to 

Table 7 
Typical neighborhood comparison - based on field survey.
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prevent disease.
Potential demographic indicators influencing the infection rate also 

included factors related to population characteristics. Although de-
mographic indicators had a minimal impact on the infection rate in this 
study, the positive correlation between occupational heterogeneity and 
the number of cases was still observed through the Models 2–1 and 3–1. 
Individual occupational types largely influenced behavioral activities 
and thus affected the likelihood of infection. Given that different occu-
pational types were more concentrated among individuals of lower 
economic status, the risk of infection increased [21]. Therefore, it is 
recommended that health education activities be carried out within the 
community, targeting different occupational groups. The educational 
content should incorporate how to adopt appropriate protective mea-
sures in accordance with the occupational characteristics to minimize 
the infection risk. Simultaneously, collaboration can be forged with local 
health authorities to evaluate the infection risk of various occupational 
types within the community. Targeted intervention measures, such as 
regular testing and preferential vaccination, can be offered to high-risk 
occupational groups. Thus, the infection risk of different occupational 
types within the community can be mitigated, and the health level and 
quality of life of the residents can be enhanced. It is also proposed to 
increase elderly care services. For neighborhoods with a higher pro-
portion of elderly residents, providing more elderly care services, 
including regular physical examinations, senior canteens, psychological 
support, and social activities, would help elderly people maintain their 
health and reduce the risk of infection.

Additionally, incorporating smart governance services into urban 
renewal projects can significantly enhance the resilience of neighbor-
hoods. Smart governance involves utilizing digital technologies and data 
analytics to improve decision-making, resource allocation, and service 
delivery [49]. By implementing smart governance systems, city planners 
can monitor and manage public health data, identify hotspot areas, and 
deploy resources more effectively. This approach aids in quicker re-
sponses to outbreaks and better management of public health measures. 
Moreover, smart governance services can enhance neighborhood 
engagement [50]. Digital platforms can be used to inform residents, 
collect feedback, and involve them in decision-making processes. This 
participatory approach ensures that the needs and preferences of the 
neighborhoods are considered in renewal projects. Adopting these smart 
governance strategies not only strengthens the neighborhood’s ability to 
withstand infectious diseases but also improves the overall efficiency 
and sustainability of urban renewal efforts.

6. Conclusion

Following the discovery of the first local infection case in Shanghai in 
March 2022, the city’s pandemic experienced an exponential increase 

within a brief timeframe of one and a half months. This study, utilizing 
data from Shanghai and incorporating the SEIR model, examined the 
influencing factors at the neighborhood-level in downtown Shanghai, 
and analyzed the relationship between 19 factors including the socio-
economic, built environment, and demographic characteristics and the 
transmission of infectious diseases. The study demonstrated a higher 
incidence rate in older neighborhoods compared to emerging ones and 
further explored the factors influencing the infection rate, indicating a 
greater impact of socioeconomic and built environment-related factors 
on the infection rate. Further research should explore the impact and 
effectiveness of various intervention policies on infection rates and the 
long-term effects of neighborhood renewal on enhancing public health 
resilience. Investigating different community renewal strategies and 
their influence on infection dynamics can provide valuable insights for 
urban planning and public health policy.

This study had some limitations, which did not adequately consider 
the impact of factors such as policy, weather and household structure on 
infection rates. Existing research suggests that factors such as family 
structure and education level can influence the infection rate at the 
neighborhood level. Crowded households, insufficient rooms, and 
shared kitchen and toilet facilities can exacerbate the spread of pan-
demics [14,31]. According to a study in Spain, populations with higher 
levels of university education could reduce the infection rate [51]. 
Meteorological factors such as temperature, wind, humidity, and air 
quality have different effects on the spread of COVID-19 [13]. And, the 
study’s findings are primarily applicable to the renovation of older 
neighborhoods in cities similar to Shanghai around the world.

The innovative contributions of this study were as follows: firstly, it 
filled the gap in international research on mainland Chinese cities and 
conducted an analysis integrating built environment, socioeconomic, 
and demographic characteristics. Secondly, it established different 
models to describe the spatial distribution of results. Finally, the 
research findings could provide references for neighborhood pandemic 
prevention policies, enhance neighborhood pandemic prevention ca-
pabilities, and guide urban healthy development.

In conclusion, this study found that in urban planning and renewal, it 
is necessary to comprehensively consider various factors such as built 
environment, socioeconomic, and demographic characteristics to 
improve urban resilience more effectively. Differentiated urban renewal 
strategies should be adopted according to the characteristics of different 
regions. For suburban neighborhoods, population density has the 
highest impact on the infection rate, and measures should be taken to 
control population density. For downtown neighborhoods, attention 
should be paid to balancing income distribution, reducing socioeco-
nomic disparities, and minimizing the aggregation of high-risk pop-
ulations. Secondly, efforts should be made to strengthen urban 
infrastructure construction and improve public health levels. Increasing 

Table 8 
Typical neighborhood comparison - based on data.

Comparison Group 1 Inner Outer Ring 
neighborhood

Comparison Group 2 middle ring 
Neighborhoods

Comparison Group 3 Inner Ring 
neighborhood

Emerging older Emerging older Emerging older

total cases 163 548 265 888 279 366
per unit area cases 0 0.001 0 0.001 0 0.002
Cases per capita 23.29 78.29 14.72 49.33 15.36 40.67
per capita infection rate 0.009 0.022 0.01 0.022 0.029 0.055
F__65 7.47% 7.95% 8.54% 10.09% 6.26% 7.14%
High_School_Below 75.58% 85.42% 71.50% 82.21% 63.72% 76.18%
Income_Lv_2499 5.00% 7.26% 4.54% 6.91% 2.72% 4.81%
Income_Lv_20,000 15.05% 9.02% 20.39% 9.87% 31.49% 13.52%
High_consumption 46.32% 36.68% 49.81% 35.41% 61.59% 41.27%
Owns_Car 63.62% 63.98% 55.09% 61.88% 49.45% 48.16%
FAR 2.241 1.653 2.285 1.585 2.804 1.616
floor 6 6 18 6 32 6
room 7 2 5 2 5 2
POPdens 0.028 0.035 0.023 0.046 0.016 0.036
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green space and outdoor recreational areas, optimizing living environ-
ments, and improving residents’ quality of life can effectively reduce 
disease transmission. Neighborhood renewal should comprehensively 
consider factors such as built environment, socioeconomic, and de-
mographic characteristics and adopt multi-level, multi-directional 
comprehensive prevention and control strategies to enhance neighbor-
hood pandemic prevention resilience and ensure the health and safety of 
residents.
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