1	Study of the Coupling Effect of CO2 and PM2.5 Emissions: A Case Study of
2	Yangtze River Delta, China
3	[Abstract]
4	Many countries are confronted with the dual challenge of mitigating CO ₂
5	emissions and controlling PM2.5 pollution, attributed to the impacts of global climate
6	change. This study explores the spatio-temporal pattern of the coupling effect between
7	CO ₂ emissions and PM _{2.5} pollution by conducting a case study of the Yangtze River
8	Delta (YRD) region of China and aims to identify the urban influencing factors that
9	contribute to this coupling effect. Utilizing a coupled coordination model, this study
10	conducted a spatio-temporal analysis of CO ₂ emissions and PM _{2.5} concentrations from
11	2008 to 2020. The model assessed the year-by-year coupling coordination degrees of
12	CO ₂ and PM _{2.5} emissions in each of the five provinces in the YRD region.
13	This study's three main findings are the following: (1) The overall coupling
14	coordination between CO ₂ and PM _{2.5} emissions exhibited a declining trend from 2013
15	to 2017, followed by a rebound in 2018. Most cities experienced their highest degree
16	of coupling in 2020. (2) Of 41 cities in the YRD region, only 10 have achieved a state
17	of coordinated development. This finding suggests that approximately 24% of the
18	YRD region attained a positive degree of coordination. (3) The megacity Shanghai
19	has achieved a stage characterized by high-quality coordination, emphasizing the
20	city's significant role in mitigating CO ₂ emissions and managing PM _{2.5} pollution in
21	the region. In addition, the analysis of urban influencing factors revealed a significant

22	correlation between several key urban factors, including land area, green space and
23	water area, road network, technical development, and industrial structure.
24	This study recommends that cities aiming to reduce CO ₂ emissions and control
25	PM _{2.5} pollution consider initiatives that address the coupling effect, such as
26	optimizing industrial land use and prioritizing spatial planning strategies. The
27	selection of the YRD region as the study area provides an exemplary model that offers
28	implications not only for other regions in China but also for other countries that face
29	similar issues.
30	[Keywords:] PM2.5, CO2, coupling effect, Yangtze River Delta, carbon

31 mitigation, carbon neutrality

1. Introduction

33	The primary driver of climate change is the ever-increasing release of greenhouse
34	gases, with carbon dioxide (CO ₂) being the main culprit. As a result, CO ₂ emission
35	and particulate matter (PM _{2.5}) concentration have become a significant concern for
36	nations that are working towards mitigating the negative impacts of air pollution and
37	climate change. Developing countries' primary sources of greenhouse gases and air
38	pollution are CO ₂ and PM _{2.5} . These emissions are driven by the rapid growth of their
39	economies, industrialization, and their continued reliance on conventional energy
40	sources (World Health Organization, 2019). Air pollution has been further
41	exacerbated by the rapid expansion of populations in these regions, leading to
42	increased emissions in countries such as Indonesia, India, and China (Ghosh et al.,
43	2024; Rahman et al., 2024; Zeng et al., 2019). The two nations with the highest
44	emissions rates, China and India, have been making significant efforts to mitigate
45	greenhouse gas emissions and manage air particulate matter, and their experiences
46	have highlighted the major challenges faced by developing nations in addressing these
47	global issues (Kumar et al., 2020; Wang & Azam, 2024).
48	A number of climate-related studies have found a coupling effect have
49	demonstrated a coupling effect between PM2.5 and CO2, highlighting the
50	interconnectedness of these two pollutants. For example, Dong et al. (Dong et al.,
51	2019) found that the reduction of CO_2 emissions can lead to a substantial decline in
52	PM _{2.5} emissions. The Intergovernmental Panel on Climate Change (IPCC) found that

53	there were co-benefits when CO_2 and $PM_{2.5}$ were viewed as homogeneous (Cai et al.,
54	2021). Other studies proved that CO_2 and $PM_{2.5}$ were homogeneous and synchronous
55	by testing both in a model and finding that efforts to reduce CO ₂ significantly
56	contributed to a decrease in PM _{2.5} (Braspenning Radu et al., 2016; Guan et al., 2023;
57	Jia et al., 2023). Furthermore, research has identified a significant synergistic effect
58	between CO ₂ and PM _{2.5} from coal consumption: These studies found that coupling
59	efforts to reduce PM _{2.5} from coal consumption could have profound impacts on public
60	health (Jia et al., 2023).
61	Past research that used spatial analysis identified a correlation between CO ₂ and
62	PM _{2.5} emissions and shed light on the mechanism of carbon pollution homogeneity,
63	investigations into the coordinated coupling of CO_2 and $\mathrm{PM}_{2.5}$ at the spatial scale have
64	been relatively scarce. This shortage of studies can be attributed primarily to
65	inadequate data availability and quantifiability, and to the need for more research and
66	application paradigms that are both standardized and reflective of local characteristics.
67	These intertwined factors collectively cause a bottleneck in research efforts.
68	Furthermore, past studies predominantly concentrated on the regional level and
69	broader, with the highest resolution typically limited to administrative divisions at the
70	county level. This limitation has made it challenging to fully understand the coupling
71	dynamics between the two emissions in urban settings. To address these gaps, this
72	study aims to analyze the spatial patterns of CO_2 and $PM_{2.5}$ emissions and identify the

74	in the YRD region.
75	2. Literature Review
76	2.1 Research progress in spatial on greenhouse gases (CO ₂) and air pollution
77	(PM _{2.5})
78	The primary greenhouse gas that originates from human activities in the
79	atmosphere is CO ₂ , which constitutes 70% of urban greenhouse gas emissions (U.S.
80	Environmental Protection Agency, 2024.). Simultaneously, the predominant
81	atmospheric pollutant, $PM_{2.5}$, accounted for 45% of the total days when recommended
82	levels were exceeded, surpassing other pollutants, such as O ₃ , PM ₁₀ , NO ₂ , and CO,
83	which constituted 41.7%, 12.8%, 0.7%, and less than 0.1%, respectively (Ministry of
84	Ecology and Environment of the Peoples Republic of China, 2021). The objective of
85	the "The 14th Five-Year Plan of the People's Republic of China" is to synergistically
86	reduce greenhouse gases and atmospheric pollutants to achieve high-quality
87	development (Chen et al., 2020). Nevertheless, few research has focused on the theory
88	of a synergy or coupling effect between CO ₂ and PM _{2.5} .
89	Previous studies that focused on the synergistic reduction of CO ₂ emissions and
90	various atmospheric pollutants concentrated on two primary domains. First, several
91	studies focused on the implementation of measures originating from different
92	emission sources or sectors. These measures, such as technological advancements and
93	industrial process enhancements, were aimed at concurrently curbing emissions of

spatial driving factors that influence the coupling degree of CO_2 and $\mathrm{PM}_{2.5}$ emissions

greenhouse gases and pollutants, thus promoting sustainable environmental protection
and a climate change response (Li et al., 2022; Zeng & He, 2023). Research about
emission sectors was relatively advanced and commonly employed the four sectors
that had been identified by the IPCC to analyze carbon emissions associated with
various economic activities, namely, energy, industry, agricultural land use, and waste
(Eggleston, 2006).

Second, several studies concentrated on the synergy of emission reduction efforts 100 101 in specific regions and spaces. This domain was characterized by a clear geographical or spatial scale perspective, and the research aim was to optimize emission reduction 102 strategies by comprehensively considering emissions from different sources and their 103 interactions to minimize impacts on the atmosphere (Alimujiang & Jiang, 2020; Li et 104 al., 2019). The spatial scale was categorized as global, regional, local, and community, 105 106 and studies revealed correlations between CO₂ and PM_{2.5} in each category. The underlying cause of this correlation was attributed to the shared source of carbon 107 pollution. 108

Both the above research domains have been instrumental in driving the development of emission reduction technologies and policies to address climate change and improve atmospheric quality. However, despite their significance, the advancement of spatial research in these areas has faced obstacles. Limited data granularity and the absence of standardized local research and application paradigms have hindered comprehensive investigations of the spatial dynamics of greenhouse

115	gases and atmospheric pollutants. To meet the increasing global and domestic
116	demands for carbon neutrality and clean air environments, urgent research on the
117	spatial co-reduction of CO_2 and $PM_{2.5}$ is needed. Such research can provide a more
118	precise understanding of the distribution patterns and interaction mechanisms of these
119	emissions at different spatial scales, thus laying a solid foundation for the
120	development of more scientifically sound and targeted emission reduction strategies.
121	2.1.1 Spatial research on CO ₂ emission reduction
122	Previous research has elucidated the relationship between CO ₂ emissions and
123	various urban variables, demonstrating that population density, economic
124	development, and industrial composition exert significant influences on carbon
125	emissions. In South Korea, an inverted U-shaped relationship was observed between
126	manufacturing agglomeration and carbon emissions. Specialized agglomeration was
127	found to decrease both local and neighboring emissions, whereas diversified
128	agglomeration primarily benefited local emissions in the short term but also
129	contributed to long-term local emission reductions (Z. Wu et al., 2024). Specifically,
130	population density and economic prosperity exhibited positive correlations with
131	carbon emissions (Guan et al., 2023), while the impact of industrial structure and
132	spatial factors varied across regions (Lu et al., 2019; Zhou et al., 2023). Policy
133	implications drawn from these findings suggest that fostering an advanced industrial
134	structure, optimizing land use, and modifying energy consumption patterns can
135	effectively mitigate CO ₂ emissions, with particular relevance for China.

136	Studies of economic factors revealed a significant negative correlation between
137	GDP per capita and the interaction between urbanization, population, and CO ₂
138	emissions. Some scholars also employed models such as the Stochastic Impacts by
139	Regression on Population, Affluence, and Technology (STIRPAT) model and
140	Geographical and Temporal Weighted Regression (GTWR) model to investigate the
141	spatiotemporal heterogeneity of driving factors, including low-carbon policies, air
142	pollutant prevention and control policies, and industrial structure on the synergistic
143	effects of pollution reduction and carbon reduction (Jiang et al., 2023; Shahbaz et al.,
144	2016).
145	2.1.2 Spatial research on PM _{2.5} reduction
146	China has made notable progress in curbing PM _{2.5} pollution by implementing
147	several concentration reduction and control measures. However, PM _{2.5} concentration
148	in urban areas remains an ongoing concern and subject of study. Researchers have
149	identified certain key factors that impact urban PM2.5, including the distribution of
150	pollution sources throughout the city, traffic patterns, and the presence of green
151	spaces (Long et al., 2021). Despite ongoing efforts, significant obstacles remain,

152 largely due to the sparse distribution of environmental monitoring stations across the

153 country, with a pronounced scarcity of such stations in smaller and medium-sized

154 urban areas. Moreover, the temporal resolution of the monitoring data frequently

155 suffer from a lack of precision. This imprecision has introduced inaccuracies into the

156 scholarly discourse on the spatiotemporal dynamics of PM_{2.5}.

157	As cities increasingly pursued high-quality development and refined their air
158	pollution control efforts, identifying spatial and temporal patterns in urban PM _{2.5}
159	concentration became imperative. Such identification is essential for reducing $PM_{2.5}$
160	levels through synergistic planning and management, thus facilitating comprehensive
161	compliance with air quality standards in subsequent stages. Some studies emphasized
162	the strong correlation between greenhouse gas emissions and atmospheric pollutants,
163	which results in robust coupling effects between air quality and climate-related
164	measures. This correlation highlights the potential for devising cost-effective air
165	pollution policies through an integrated approach (Ang et al., 2015). Studies also
166	underscored the significance of low-carbon policies, enhancing the public
167	transportation infrastructure, and considering various socio-economic factors to
168	achieve effective reductions in PM2.5 and CO2 emissions (Huang & Tsai, 2014; Wang
169	et al., 2024). Some suggested that a comprehensive approach should be adopted to
170	address the interconnected nature of environmental, economic, and social factors,
171	ultimately working toward the attainment of sustainable and low-carbon urban
172	development (Yi et al., 2022).

2.2 Coupling effect and driving factors

174 Coupling theory refers to the interaction between two or more systems or
175 components, describing and analyzing the transmission and conversion of energy and
176 information between systems, as well as the coordination and adjustment between
177 systems (Boccaletti et al., 2006). When coupling theory is extended from physics to

178	other fields, the analysis process involves the following steps: (1) identify and
179	quantify the various systems involved in environmental problems (e.g., natural
180	systems, social systems, economic systems) and the connections and impacts between
181	them; (2) establish mathematical models and calculation methods to simulate and
182	predict the dynamic change process and results of environmental problems and
183	evaluate the effects and costs of different solutions; (3) find optimal solutions to
184	achieve coordinated development of various systems and improve problem
185	management efficiency and impact; (4) monitor and evaluate the implementation of
186	solutions to maintain the stability and sustainability of each system (McCracken et al.,
187	2024).
188	Both CO ₂ and PM _{2.5} exhibit relatively stable chemical characteristics, and their
189	interactions in the air are not readily apparent. Their coupling characteristics primarily
190	stem from similar emission sources and physical spatial diffusion. More recent studies
191	of the coupling coordination of CO_2 and $PM_{2.5}$ have focused primarily on spatial
192	disparities, policy impacts, and driving factor analysis (Fang et al., 2015; Wang et al.,
193	2017; Wang et al., 2017). These studies aim to explore the emission characteristics of
194	CO_2 and $\mathrm{PM}_{2.5}$ at the provincial level, the influence of policy measures on emission
195	reduction effects, and the key factors that cause change in emissions.
196	In recent years, applied research has gradually increased, with more studies
197	focusing on the reduction of coupling coordination in atmospheric pollutants and
198	greenhouse gases. Among such research, many foreign studies have predominantly

199	employed modeling simulations to investigate the effectiveness and synergistic effects
200	of various emission reduction strategies (Cai et al., 2021). This approach enables the
201	simulation of emission scenarios and environmental impacts under different policy
202	contexts, thus providing scientific evidence for policymakers. Concurrently, some
203	studies have evaluated the cost-effectiveness and synergistic effects of China's air
204	quality planning and greenhouse gas control measures from the perspective of input-
205	output analysis (Yi et al., 2022). This perspective underscores the interaction between
206	the economy and the environment and aims to identify policy scenarios that can
207	achieve optimal synergistic benefits at minimal cost. Such considerations are
208	particularly important for developing countries that have limited resources.
209	Studies of the factors that drive various forms of pollution have had varied
210	findings. Considering the unique characteristics of China's economic development,
211	existing research has identified several key factors that drive CO2 emission. These
212	factors include industrial structure, property rights structure, energy composition,
213	level of urbanization, government regulations, and more (Fang et al., 2015).
214	However, regarding the driving factors that influence air pollutants, such as
215	PM _{2.5} , relatively few studies have concentrated on the determinants of these pollutants'
216	emission efficiency. Some research studies have identified factors that potentially
217	affect PM _{2.5} emission efficiency, including population density, economic development
218	levels, environmental regulatory measures, and the degree of industrialization. In
219	addition, studies have attempted to measure the impact of natural ecological factors,

220	such as wind speed, precipitation, and urban green spaces, on measures to mitigate
221	urban PM _{2.5} emission (Wang et al., 2017). Some found ecological restoration projects
222	prohibited PM _{2.5} growth (Yang, Shi, et al., 2024). For a more comprehensive
223	understanding, further in-depth research is necessary to explain the specific
224	mechanisms by which these factors affect $PM_{2.5}$ emissions and their evolving trends
225	in different regions and periods.

2.3 Multiple data sources and analysis

Many studies have focused on national, provincial, and urban agglomeration 227 levels, leaving a research gap at the level of city and neighborhood. Some researchers 228 believe that as China transitions towards a more localized approach to emissions 229 issues, it is necessary to analyze large-scale data (e.g., measurements at the provincial 230 level) to accurately reflect the actual state of CO2 and PM2.5 emissions across the 231 country. Access to accurate air quality data at the county and municipal levels is 232 crucial for developing effective emission reduction strategies. While national and 233 provincial-level analyses provided macro-level insights into overall emission trends 234 and policy implications, more robust analysis that accurately targets and assesses 235 specific emission sources in different regions is required. Localized data allows for 236 237 the formulation of customized regulations based on the varying nature and influencing 238 factors of emissions in various cities and counties. Factors that play a role in these differences include industrial activities, traffic patterns, and geographical conditions. 239

240	The primary source of information about CO_2 and $PM_{2.5}$ levels has been satellite,
241	statistical, and monitoring data. Such data has been used to extract meaningful
242	information, including spatiotemporal distribution, trends, and source-sink analysis.
243	Satellite remote sensing data has been of crucial importance to the observation of
244	carbon emissions and PM _{2.5} concentrations (Lin et al., 2018; Ma et al., 2016). Such
245	data provides comprehensive coverage and flexibility in spatiotemporal resolution,
246	offering multi-scale observations on a global level or the level of a specific area to
247	reflect the spatiotemporal distribution characteristics of pollutants.
248	Statistical data involves the use of economic, energy, industrial, and
249	demographic information from a country's census. Combined with the emission factor
250	method, these statistics are used to calculate carbon emissions in specific regions.
251	Monitoring data encompasses information obtained through on-site observation and
252	measurement, including exhaust emission, meteorological, and air quality data. Such
253	data can be used to directly measure emissions from carbon emission sources, such as
254	industrial, transportation, and energy-production emissions. Monitoring data can also
255	be utilized to evaluate greenhouse gas concentrations and air quality in the
256	atmosphere, providing insights into environmental pollution. Due to the limitations of
257	data, such as its difficulty to assess and often lower resolution, some studies have
258	resorted to using satellite imagery, statistical analysis, and monitoring data to gain a
259	more comprehensive and accurate understanding of carbon emissions, allowing for
260	the analysis of emission trends, source and sink distributions, and environmental

261	impacts. Numerous studies have explored synergistic emission reduction strategies
262	concerning greenhouse gas emissions and various atmospheric pollutants, primarily
263	focusing on provincial or metropolitan scales. Nevertheless, few, if any, have
264	undertaken research at the city scale to specifically address the synergistic emission
265	reduction of CO_2 and $PM_{2.5}$ in urban areas. Additionally, more exploration is needed
266	of approaches to spatial planning that aim to achieve synergistic emission reduction in
267	the pursuit of carbon neutrality goals. Therefore, the primary objective of this study is
268	to investigate the spatial and temporal patterns and the coupling characteristics of CO ₂
269	and $PM_{2.5}$ in urban environments. This research aims to clarify the influencing
270	mechanisms through which key control factors influence synergistic emission
271	reduction efforts at the city level.
272	3. Models and data sources
273	3.1 Study Area
274	The YRD (Figure 1) is one of the regions with the highest concentration of
275	industry and the most rapid economic development in China. The YRD region has
276	been designated a critical area for pollution reduction and carbon mitigation in terms
277	of the Beautiful China initiative. Controlling fine particulate matter is a primary focus
278	of this program, and vigorous efforts are directed at the coordinated reduction of
279	multiple pollutants.
280	The YRD region is located between the longitudes of 114°54' and 123°10' east

and latitudes of 27°02' and 35°20' north. YRD typically encompasses parts of China's

282	Shanghai, Jiangsu, Zhejiang, and Anhui provinces. Specifically, the YRD region
283	includes the following cities: Shanghai; Jiangsu cities of Nanjing, Wuxi, Changzhou,
284	Suzhou, Nantong, Yancheng, Yangzhou, Zhenjiang, and Taizhou; Zhejiang cities of
285	Hangzhou, Ningbo, Jiaxing, Huzhou, Shaoxing, Jinhua, Zhoushan, and Taizhou; and
286	the Anhui cities of Hefei, Wuhu, Ma'anshan, Tongling, Anqing, Chuzhou, Chizhou,
287	and Xuancheng. According to data from the Seventh National Census Bulletin, by the
288	end of 2020, the permanent resident population of the YRD had reached 235 million,
289	accounting for 16.7% of the total population of China.
290	The YRD region is a cornerstone of China's economic prowess and plays a
291	pivotal role in the nation's financial, technological, and trade sectors. Boasting major
292	metropolitan areas like Shanghai and Hangzhou, the YRD has emerged as an
293	innovation hub, driving technological advancement and contributing substantially to
294	China's global competitiveness. However, the region's rapid urbanization and
295	burgeoning population have created environmental challenges, necessitating robust
296	policy making to control these issues.
297	According to the Air Pollution Prevention and Control Action Plan, issued by the
298	State Council of China in 2013, PM _{2.5} pollution has been effectively mitigated in the
299	YRD region. However, further efforts are required to reduce emissions. The average
300	$PM_{2.5}$ level in the YRD was 41 μ g/m3 in 2019, surpassing the World Health
301	Organization's standard of 10 μ g/m3. Simultaneously, the Carbon Peaking and
302	Carbon Neutrality Implementation Plan explicitly outlines China's strategic goal of

reducing CO₂ emissions. The nation aims to achieve a peak in carbon emissions by
2030 and attain carbon neutrality by 2060.

China has implemented stringent environmental control measures in the YRD to tackle these challenges. These policies aim to address issues such as air and water pollution resulting from rapid industrialization and urbanization. Specific strategies include regulating industrial emissions, enhancing energy efficiency, and promoting the adoption of green technologies. The selection of the YRD region as the case study means that this study can potentially serve as a valuable reference for similar regions and provide insights that are applicable to developing countries.

Figure 1: Map of Yangtze River Delta Megalopolis

312

Figure 1. Map of Faligize River Delta

313 **3.2 Data Sources**

314	The study employed CO ₂	and PM _{2.5} data from the Multi-scale Emission
-----	------------------------------------	--

- 315 Inventory of China (MEIC model), a bottom-up model that estimates direct emissions
- 316 across four critical sectors: transportation, industry, residential, and power. These
- 317 emissions were directly released into the atmosphere without intermediary

318	transformations. The same sectors were selected for the $PM_{2.5}$ data from MEIC v1.4,
319	facilitating a comprehensive analysis in conjunction with CO ₂ data to examine
320	emission patterns, their socio-economic determinants, and the degree of coupling
321	coordination between these emissions.
322	In order to assess the reliability of the MEIC data, the study compared MEIC
323	carbon emissions with provincial data from the Carbon Emission Accounts &
324	Datasets (CEADs). The deviation between datasets fell within an acceptable range,
325	with a total deviation of 8.3% for MEIC data relative to actual figures. Larger
326	discrepancies appeared in Zhejiang and Anhui provinces, while Shanghai and Jiangsu
327	showed deviations around 5%, which were within expected error margins. Thus,
328	deviations in Zhejiang and Anhui were considered during analysis. Given the
329	challenges in accessing high-precision, sector-specific CO ₂ emission data and
330	historical $PM_{2.5}$ data, MEIC data proved to be a relatively reliable source for CO_2 and
331	PM _{2.5} emission accounting.
332	Additionally, the study incorporated road network data from OpenStreetMap's
333	(OSM) History Dump (2024), providing crucial spatial information on road
334	infrastructure. This data was essential for examining emissions relative to
335	transportation networks and urban layouts. Socio-economic data from the China
336	Statistical Yearbook (National Bureau of Statistics) included indicators such as GDP,
337	population, industrial output, and energy use, which allowed for a comprehensive

analysis of the socio-economic factors influencing CO2 and PM2.5 emissions across

339	sectors.	Detailed	data	sources	were	provide	d in	Table	1.
-----	----------	----------	------	---------	------	---------	------	-------	----

	Tab	ole 1: Data Sou	rce
Data Type	Source	Year	Description
CO ₂	MEIC v1.4: Multi-	2008 - 2020	MEIC offers comprehensive, high-
Emissions	resolution Emission		resolution CO ₂ emissions data for
	Inventory for China		four sectors: transportation,
	(Li et al., 2017; MEIC,		industry, residential, and power.
	2023; Zheng et al.,		All data are Scope 1 direct
	2018)		emissions.
PM _{2.5}	MEIC v1.4: Multi-	2008 - 2020	Contains sector-specific PM _{2.5}
Emissions	resolution Emission		emissions data (industry,
	Inventory for China		residential, transportation)
	(Li et al., 2017; MEIC,		compatible with CO ₂ data,
	2023; Zheng et al.,		facilitating analysis of emission
	2018)		synergies.
Road	OpenStreetMap	2008 - 2020	Spatial data on road infrastructure,
Network	(OSM) History Dump		essential for studying emissions in
	(OpenStreetMap,		relation to transportation networks
	2024)		and urban layout.

Socio-	China Statistical	2008 - 2020	Includes key indicators (GDP,
economic	Yearbook (National		population, industrial output,
Data	Bureau of Statistics)		energy use), enabling the analysis
			of socio-economic factors
			influencing CO ₂ and PM _{2.5}
			emissions patterns.

3.3 Models

342	This study designed a comprehensive methodological framework(Figure 2) to
343	investigate the spatial factors influencing the coupling degree in the YRD region.
344	By integrating diverse datasets, the framework provides an exhaustive
345	understanding of the spatio-temporal patterns of CO ₂ and PM _{2.5} emissions, as well
346	as socio-economic variables. Utilizing rigorous spatial autocorrelation, temporal
347	trend analysis, and regression techniques, the model identifies key spatial factors
348	that significantly impact the coupling degree within the YRD. The insights
349	garnered from this framework are of utmost importance for informing the
350	development of sustainable policies and fostering regional coordination in the YRD,
351	thereby contributing to the advancement of environmental and socio-economic
352	research in the region.

Figure 2: Methodological framework

3.3.1 Spatio-temporal visualization of CO₂ and PM_{2.5} distribution

This study performed descriptive statistics and tests for the distribution of the CO₂ and PM_{2.5} data. Outliers were removed, and ArcGIS was employed to conduct exploratory spatial data analysis (ESDA) on the emissions of CO₂ and PM_{2.5} in the research area. The study simulated the spatial distribution patterns of CO₂ and PM_{2.5} by using the ArcGIS software.

360

3.3.2 Coupling Coordination Model

In this study, a coupling coordination model was used to analyze the coupling between CO₂ emissions and PM_{2.5} concentration. For each year, the annual coupling coordination values (D) for the Shanghai CO₂ emissions (U1) and PM_{2.5} concentration (U2) systems were calculated. Both systems consisted of four subsystems: electricity, industry, residential, and transportation. D values fall within the range of 0 < D < 1, where a higher D value indicates a higher degree of coupling coordination betweenthe systems.

368 This step is primarily for data processing convenience, where the data is mapped 369 within the range of 0 to 1. The formula for calculation is:

$$0.01 + (0.99 - 0.01) * (X - Min) / (Max - Min),$$
 (1)

370 where Max and Min represent the maximum and minimum values of the

- data in the respective subsystem.
- 3721) Calculate the coupling degree (C) and coordination index (T):

$$C=2\times \left[\frac{U1*U2}{(U1+U2)^2}\right]^{\frac{1}{2}},$$
(2)

where U1 and U2 are the weighted sums of the interval values of each
subsystem. The weights for each subsystem are determined using the SPSS-AU
entropy method.

$$T = \beta 1 U 1 + \beta 2 U 2, \tag{3}$$

376 where $\beta 1$ and $\beta 2$ represent the weights of the two systems within the

377 current system. In this study, $\beta 1 = \beta 2 = 0.5$.

2) Calculate the coupling coordination value:

$$D = \sqrt{C * T} , \qquad (4)$$

The classification of the coupling degree between CO_2 and $PM_{2.5}$ in the YRD based on the D value is presented in Table 2. The stages are: disordered coupling (D = 0), low coupling (D = 0 to 0.3), antagonistic (D = 0.3 to 0.5), integration (D = 0.5 to 0.8), and high coupling (D = 0.8 to 1). These stages reflect the correlation strength, ranging from lack of correlation to high correlation between CO_2 and $PM_{2.5}$. This classification helps clarify the environmental dynamics that are at work, thus facilitating effective policymaking in the YRD region.

- Table 2: Classification and stage characteristics of coupling degree between CO₂
- 387

and PM_{2.5} in YRD

Classification	Subclasses
Seriously unbalanced development	$0 < D \le 0.2$
Moderately unbalanced development	$0.2 < D \le 0.4$
Slightly unbalanced development	$0.4 < D \le 0.5$
Barely balanced development	$0.5 < D \le 0.6$
Favorably balanced development	$0.6 < D \le 0.8$
Superiorly balanced development	$0.8 < D \le 1$

- 388 **3.3.3 Constructing the STIRPAT model**
- 389 The IPAT model comprises the elements I (environmental impact), P
- 390 (population size), A (affluence), and T (technology level). To improve on the limited
- 391 scope of the IPAT model and examine more factors that affect environmental
- elements, Dietz and Rosa extended the IPAT model to create the STIRPAT model.
- 393 The STIRPAT model is an expanded version of the IPAT model.
- **394 3.3.4 Geographically weighted regression**

395	Geographically weighted regression (GWR) is a spatial statistical technique that
396	extends traditional linear regression models by accounting for spatial variations in
397	the relationships between dependent and independent variables. Unlike global
398	regression models, which assume a constant relationship across the entire study area,
399	GWR recognizes that the strength and nature of these relationships can vary spatially.
400	This method is particularly useful in analyzing spatially heterogeneous data, where
401	the relationship between variables may change across different locations.
402	4. Results
403	4.1 Spatial and temporal emissions of CO ₂ and PM _{2.5}
404	This study compared the spatial and temporal emission data of CO_2 and $PM_{2.5}$ in
405	the YRD region to the total emissions recorded from 2008 to 2020. The analysis
406	revealed that the power, industry, residential, and transportation sectors accounted for
407	a significant proportion of CO ₂ emissions from various sectors in the administrative
408	regions. Notably, the industry and power sectors were responsible for most of the CO_2
409	emissions in the YRD region. Regarding the provinces, Shanghai, Jiangsu, Zhejiang,
410	and Anhui collectively contributed over 80% of the CO ₂ emissions generated by the
411	industrial and power sectors. Of these provinces, Shanghai's industrial sector made a
412	higher contribution to emissions when compared to its power sector, while Anhui's
413	residential sector had a higher impact than other provinces' residential sector This
414	finding highlights that the industrial sector in Shanghai alone accounted for more than
415	half of the total emissions in the region. Hence, it would be prudent for Shanghai to

416	direct its efforts at industry and adopt a more rational approach to controlling
417	industrial emissions to reduce CO ₂ emissions effectively. Conversely, Anhui province
418	should prioritize the residential sector and encourage the adoption of policies that
419	promote reduced CO ₂ emissions resulting from civilian use while considering the
420	YRD region's synergistic policies.
421	The findings reveal the following three primary aspects of spatial distribution: (1)
422	Cities with high population density and advanced economies, such as Shanghai and
423	Suzhou, which are provincial capital cities and transportation hubs, have higher CO ₂
424	emissions. (2) CO_2 emissions in the northern regions of the YRD area were notably
425	higher than in the south due to the increased demand for residential heating in winter.
426	(3) Except for the residential sector, CO ₂ emissions generally decrease from the
427	central region of Shanghai towards its periphery.
428	In the period 2011 to 2020, the growth rate of total CO ₂ emissions has slowed
429	down and even decreased, as can be seen in the time distribution. Anhui and Jiangsu
430	provinces showed a decline in the transportation sector, while the power sector
431	increased considerably. As for $PM_{2.5}$, the transportation sector in each region had the
432	lowest growth rate. Encouragingly, the total amount of $PM_{2.5}$ has decreased over the
433	past ten years, with industrial PM _{2.5} declining significantly in 2013, marking a turning
434	point. These positive changes suggest that the national PM _{2.5} pollution control policy
435	has had an impact. However, most cities in the YRD region were found to have
436	experienced an increase in CO ₂ emissions, and it was worth noting that megacities

437	such as such as Shanghai and Jiaxing and Taizhou in Zhejiang province displayed a
438	downward trend in CO ₂ emissions. Despite this, the distribution of CO ₂ emissions
439	across the region remained largely unchanged over the past decade, with Shanghai
440	and surrounding cities continuing to be identified as high-emission areas.
441	In 2020, as shown in Figure 3, Shanghai, Suzhou, and Hefei were the cities that
442	recorded the highest total emissions of CO ₂ and PM _{2.5} . Of the four sectors, industry
443	was responsible for the highest rate of emissions, mainly in the cities of Shanghai,
444	Suzhou, Hangzhou, and Hefei, which are the key economic pillars of their respective
445	provinces. The residential sector followed, with the northwestern YRD exhibiting
446	significant PM _{2.5} while lower levels of CO ₂ emission were observed in the
447	southeastern portion. Emissions data for the power sector indicated that Ningbo and
448	Zhenjiang had the highest emission rate in both CO2 and PM2.5. Finally, in the
449	transportation sector, most of the coastal cities in the YRD had substantial levels of
450	PM _{2.5} , with Shanghai having the highest rate of CO ₂

451 emission.

452 Figure 3: 2020 CO₂ and PM_{2.5} emission in YRD region by factors: total, power, 453 industry, residential, and transportation

454	The Moran's I analysis revealed that most emissions had positive values,
455	indicating a certain level of positive spatial autocorrelation. However, the correlation
456	was not strongly pronounced. The $PM_{2.5}$ emissions generated by the power sector
457	displayed a negative Moran's I value close to zero, accompanied by a higher P-value,
458	which indicated the absence of significant spatial autocorrelation in this category. Of
459	the four sectors analyzed, industrial CO2 and residential PM2.5 showed significant
460	spatial autocorrelation, while traffic CO2 showed relatively significant spatial
461	autocorrelation. In contrast, other emission categories and sectors did not show
462	substantial spatial autocorrelation based on the analysis.
463	Furthermore, the study found that the primary areas with high CO ₂ emissions
464	were in and around Shanghai, indicating a clear spatial relationship in how emissions

465	were distributed across various sectors. Additionally, Anhui province and western
466	Zhejiang province showed significantly low levels of emissions. For residential CO ₂
467	emissions, besides Shanghai, high concentrations of emissions were identified in the
468	eastern and northern parts of Jiangsu province and northern Anhui province. However,
469	there was a noticeable drop in emissions centered around Zhejiang province. While
470	industrial CO2 was linked to industrial agglomeration in the YRD region,
471	transportation CO ₂ did not demonstrate a distinct pattern. Furthermore, the
472	distribution of hot and cold spots in power CO2 displayed a step-like pattern
473	extending from the southwest to the northeast of the YRD region.
474	While this study found that Shanghai and its surrounding cities were the primary
475	hotspot areas for PM _{2.5} , other sectors showed variations in hotspot distribution. The
476	concentration of industrial PM _{2.5} was primarily in the central part of the YRD, and
477	central Anhui province displayed a high-high pattern in industrial PM _{2.5} . This finding
478	signals the importance of the Central Anhui as a critical area for targeted
479	concentration control efforts. Residential PM2.5 displayed a similar distribution to
480	industrial PM _{2.5} , but with a larger proportion of cold spots. This distribution
481	emphasized more pronounced spatial clustering, which was highly concentrated in
482	central YRD. The distribution in the transportation sector was relatively modest, with
483	most cities lacking significant high-high or low-low patterns. Primary hotspots
484	persisted in Shanghai and surroundings, where key transportation hubs in the YRD

are situated. The distribution in the power sector was more scattered, showcasing a
multi-point and high pattern across the region.

487

4.2 Coupling coordination degree of CO₂ and PM_{2.5}

Between 2008 and 2013, the degree of coupling coordination increased 488 consistently, reaching its peak in 2013 (Figure 4). Heightened synergy and improved 489 coordination among the factors under consideration characterize this timeframe. 490 However, from 2013 to 2016, the trend shifted, and the degree of coupling 491 coordination declined. This finding suggests either a transitional phase or a change in 492 the relationship between CO₂ and PM_{2.5}. Interestingly, a glimmer of recovery was 493 494 observed in 2018, hinting at a potential stabilization or renewed alignment of the contributing factors that had been apparent since 2017. The trend observed from 2017 495 to 2018 is linked to the implementation of national policies aimed at addressing 496 497 pollutants and environmental concerns. Remarkably, except for 2012 and 2017, the coupling coordination degree remained resilient, maintaining a relatively high level 498 throughout the rest of the years under observation. The sustained level of coordination 499 imply a consistent equilibrium or interdependence among the variables assessed, 500 501 contributing to the system's overall stability. Nuanced temporal dynamics in the coupling coordination degree over these years reveal the intricate interplay of factors 502 that influence the observed patterns and trends, highlighting the complexity of the 503 system's behavior. 504

505	Between 2018 and 2020, Shanghai exhibited a consistent upward trend in
506	coupling coordination, progressing from favorably balanced development to
507	superiorly balanced development. This positive trend reflects sustained efforts
508	towards enhanced synergy and harmonization among its various components and a
509	positive coupling development trend in CO ₂ and PM _{2.5} . Although cities such as
510	Nanjing, Wuxi, Xuzhou, and Changzhou experienced minor fluctuations in coupling
511	coordination, overall, they fell within the categories of slightly balanced development
512	to barely balanced development of the coupling degree. This finding suggested a need
513	for further improvement in emission control in these cities. Meanwhile, Suzhou
514	observed a continuous enhancement in coupling coordination, progressing from
515	barely balanced development to favorably balanced development. This steady upward
516	trend in coupling development reflects Suzhou's sustained efforts towards achieving
517	greater synergy and balance among its emissions. However, cities like Lianyungang,
518	Huai'an, and Yancheng demonstrated coupling coordination levels classified as
519	slightly unbalanced development. This finding indicates the need for greater effort to
520	achieve balanced development and coordination. The analysis also revealed a
521	spectrum of coupling development ranging from moderately unbalanced to slightly
522	unbalanced in cities such as Zhoushan, Lishui, and Huangshan. This finding
523	emphasizes the need for intensified policy support and coordinated development
524	efforts in these places.

525	The findings reported above highlight significant regional disparities in coupling
526	coordination among different cities. Various factors are at play, such as economic
527	development levels, industrial structures, urban planning and management, and
528	environmental protection. Notably, Shanghai, as an economically developed city, was
529	the only city that experienced a gradual improvement in coupling coordination, which
530	resulted in superiorly balanced development. This result suggests that Shanghai has
531	stable control over CO_2 and $PM_{2.5}$. In contrast, cities in the central and western areas
532	of the YRD, such as Huangshan and Xuancheng, demonstrated relatively lower
533	coupling coordination. Some cities were even classified as severely disordered or
534	moderately disordered, which could be attributed to insufficient environmental
535	resources being committed to the control of CO ₂ and PM _{2.5} emissions.
536	According to the assessment of the CO ₂ and PM _{2.5} coupling coordination degree
537	in 2020 (Table 3, Figure 5), only 10 of the 41 cities in the YRD region have achieved
538	coordinated development. This observation suggests that roughly 24% of the cities
539	have attained a certain degree of coordination, while the remaining 76% still need to
540	reach such a status. Shanghai was the only urban center to have achieved a stage of
541	high-quality coordination, underscoring its pivotal role in the region. Suzhou has
542	demonstrated commendable progress by achieving a level of coordination indicative
543	of favorably balanced development. In contrast, Wuxi has progressed to a state of
544	barely balanced development.

545	Seven other cities (Nanjing, Xuzhou, Nantong, Zhenjiang, Hangzhou, Ningbo,
546	and Hefei) have also made significant progress towards achieving coordination.
547	However, it must be acknowledged that these cities still face challenges stemming
548	from unbalanced development. It is therefore crucially important to continue making
549	concerted efforts to enhance those cities' coordination levels, particularly when
550	mitigating CO ₂ emissions and PM _{2.5} pollutants. If similar environmental mitigation
551	strategies to those of Shanghai were implemented, these seven cities have the
552	potential to greatly enhance the coupling effect of both emissions.
553	The cities that achieved a state of coupling coordination are primarily located in
554	the provinces of Jiangsu (four cities), Zhejiang (three cities), and Shanghai (one). In
555	Anhui province, Hefei was the only city to achieve a state of coordination. The cities
556	that were found to be in a state of marginal coordination, nearing imbalance, or in a
557	state of imbalance shared a common geographical feature, they are located on the
558	periphery of their respective provinces, in another word, in rural areas. To promote
559	synergistic emission reduction in these cities, it is imperative to enhance policy
560	support, advocate for targeted emission reduction strategies, and advance initiatives
561	for balanced regional development.

Figure 4: Coupling coordination degree, 2010–2020

563

Table 3: Coupling coordination degree in YRD cities, 2020

	Coupling		Coupling		Coupling
City	Coordination	City	Coordination	City	Coordination
	Degree		Degree		Degree
Shanghai	0.963	Ningbo	0.621	Huaibei	0.399
Nanjing	0.657	Wenzhou	0.392	Tongling	0.431
Wuxi	0.714	Jiaxing	0.415	Anqing	0.457
Xuzhou	0.694	Huzhou	0.479	Huangshan	0.166
Changzhou	0.573	Shaoxing	0.495	Chuzhou	0.411

Suzhou	0.824	Jinhua	0.458	Fuyang	0.493
Nantong	0.656	Quzhou	0.37	Suzhou	0.5
Lianyungang	0.364	Zhoushan	0.123	Lu'an	0.36
Huai'an	0.36	Taizhou	0.318	Bozhou	0.316
Yancheng	0.517	Lishui	0.186	Chizhou	0.396
Yangzhou	0.506	Hefei	0.696	Xuancheng	0.403
Zhenjiang	0.664	Wuhu	0.591		
Taizhou	0.415	Bengbu	0.402		
Sugqian	0.335	Huainan	0.568		
Hangzhou	0.627	Ma'anshan	0.442	-	

Figure 5: Coupling coordination degree, 2020

565 **4.3 Spatial influencing factors**

A total of 18 variables were included in the OLS regression model, covering 566 socioeconomic factors, the built environment, level of urbanization, and traffic 567 accessibility. To address concerns about potential multicollinearity, an evaluation was 568 performed on factors that displayed a correlation coefficient exceeding 0.7. After the 569 assessment, a refined set of five variables was identified and ultimately chosen for 570 inclusion in the model, with the 2020 Coupling Coordination Degree serving as the 571 572 dependent variable. The OLS result (Table 4) revealed that the independent variables Traffic Land (Transportation and Land) and Industry Structure (Industrial Structure) 573 both exhibited a significant positive correlation with the dependent variable. In 574

575	contrast, Tech_Lv (Technical Level) demonstrated a statistically significant negative
576	correlation with the dependent variable. These findings suggest that neither Area nor
577	GreenWater_Area (Green and Water Area) proved to be statistically significant
578	predictors within this regression model. Overall, the model demonstrated a reasonable
579	level of explanatory power, with an R ² value of 0.499, while the adjusted R ² value,
580	accounting for the number of independent variables in the model, was 0.425.

	Estimate	Std. Error	t-value	Pr(> t)	
(Intercept)	0.368	0.0532	6.92	<0.0001	***
Area	>-0.0001	< 0.0001	-0.761	0.4517	
GreenWater_Area	< 0.0001	< 0.0001	1.443	0.1583	
Traffic_Land	< 0.0001	< 0.0001	2.489	0.0179	*
Tech_Lv	-0.862	0.419	-2.056	0.0475	*
Industry_Structure	0.111	0.0546	2.036	0.0496	*
R ²	0.499				
Adjusted R ²	0.425				

Table 4: OLS regression result of coupling degree and independent variables

582	One of the objectives of this study was to examine the spatial relationship
583	between coupling degree and independent variables across different regions, which is
584	why a geographically weighted regression (GWR) model was adopted. The analysis
585	found spatial heterogeneity in certain variables (Figure 6), specifically transportation
586	and land (Figure 6(a)), as well as area (Figure 6(e)). For transportation and land, the

results indicated a distinct spatial pattern in the YRD region, with positive 587 correlations observed in the southeastern areas, such as Ningbo, Shaoxing, Wenzhou, 588 589 and Taizhou, and negative correlations evident in the northern areas. Moreover, the analysis highlighted a positive correlation between area and coupling degree in two 590 southwestern cities, Lishui and Quzhou. This finding indicates that increases in area 591 592 correspond with increases in coupling degree in these localities. Furthermore, both green areas and water areas (Figure 6(b)) and industrial 593 structures (Figure 6(c)) exhibited positive correlations. However, significant spatial 594 595 heterogeneity was observed across the YRD. The analysis revealed disparities between the northern and southern regions in terms of green and water areas, whereas 596 industrial structure exhibited differences between the western and eastern areas. The 597 only variable that displayed a negative correlation across the entire YRD region was 598 the technical level (Figure 6(d)). 599

Figure 6: (a) Transportation and land; (b) Green and water area; (c) Industrial
structure; (d) Technological level; (e) Area

5. Discussion

603	Spatial planning is crucial for achieving China's dual carbon goals and holds
604	significant potential for improving air quality. Research has provided evidence that
605	implementing land use planning strategies can facilitate the achievement of dual
606	carbon objectives (Yang, Xie, et al., 2024). National regulations on spatial planning
607	mandates rational spatial layout and land use control in land development. Such
608	development must be guided by diverse regional, typological, and hierarchical
609	functional orientations and developmental objectives (Chen et al., 2020). In addition,
610	the needs of both socioeconomic advancement and ecological conservation must be
611	met. On the one hand, such measures as optimizing urban-rural structures, regulating
612	land use, and safeguarding ecosystems can effectively reduce the intensity and overall
613	emission of greenhouse gases and atmospheric pollutants. On the other hand, national
614	spatial planning can also drive innovative development in areas such as green
615	transportation and clean energy. These goals can be accomplished through various
616	strategies, such as optimizing transportation route planning, increasing clean energy

617 infrastructure, and enhancing public transportation coverage, that align with the

618 national goals of pollution reduction and emission mitigation (Chen et al., 2020).

619 Based on the above findings, this study offers several planning proposals to address environmental concerns. Considering the complex interplay between CO2 and 620 PM_{2.5}, a thoughtful and nuanced approach is essential. Therefore, it is essential to 621 622 carefully select an indicator system at the regional level that considers per capita emissions, per area emissions, and total emissions. This multifaceted approach 623 enables the accurate assessment and monitoring of CO2 and PM2.5 emissions, laying a 624 strong foundation for the development of effective mitigation strategies. Regarding 625 urban planning strategies, it is essential to move beyond mere expansion and 626 development and prioritize the control of city size and growth rates. Moreover, some 627 studies have suggested that individual cities require their own, uniquely targeted 628 629 urban expansion and environmental protection strategies to achieve the goal of controlling both CO₂ and PM_{2.5} (Cai et al., 2018; Liu et al., 2023; Xia et al., 2022). 630 Based on the findings of the GWR analysis, a zoning strategy can be 631 632 instrumental in effectively reducing emissions and improving air quality. By dividing regions at the provincial level based on spatial autocorrelation results, targeted 633 emission reduction strategies can be developed to address each area's unique 634 challenges and opportunities. On the one hand, regions with a high coupling 635 coordination degree in CO₂ and PM_{2.5} emissions tended to adopt more effective and 636

637 efficient governance strategies that worked in synergy. Implementing such measures

638	effectively reduced pollutant emissions, especially in regions with high coupling
639	coordination. On the other hand, regions with a low coupling coordination degree may
640	have faced challenges from alternative sources of pollution and emission factors.
641	Tailored governance strategies must therefore be developed to address these
642	challenges. It is important to understand that in regions with a low coupling
643	coordination degree, synergistic governance strategies should not be enforced
644	indiscriminately.
645	In addition, when pollution control measures are being devised, it is crucial to
646	consider the correlation between CO_2 and $PM_{2.5}$ emissions. Each region's coupling
647	coordination degree had its own nuanced characteristics, which highlights the need for
648	tailored governance approaches based on specific contextual attributes. A tailored
649	approach to governance would ensure specifically targeted interventions that promote
650	synergy and collaboration between, on the one hand, efforts to reduce diverse types of
651	emissions and pollution and, on the other hand, sustainable urban development. The
652	findings of this study indicate that if these concerns are prioritized in urbanization
653	plans, natural resources can be safeguarded and the risks posed by emissions and
654	pollution mitigated. Ultimately, the result will be healthier and more livable urban
655	environments.
656	Furthermore, a previous study found that high-density, compact urban land-use
657	patterns reduce CO ₂ emissions because this approach enhances energy consumption
658	efficiency by developing public transportation and compact urban structures (Xia et

659	al., 2022). This study found that the industrial sector emerged as a predominant
660	contributor to CO_2 and $PM_{2.5}$ emissions within the city, and policy interventions
661	targeting this sector could yield substantial environmental benefits. Industrial land use
662	has significantly impacted CO2 and PM2.5, suggesting that urban planning strategies
663	should prioritize the mitigation of emissions from industrial activities (Ben-Ahmed &
664	Ben-Salha, 2024; L. Li et al., 2022; S. Wang & Li, 2023; Zhang et al., 2021).
665	Optimizing industrial structure allocation and promoting the adoption of clean energy
666	and low-carbon technologies are critical steps toward achieving sustainable
667	development goals (Ben-Ahmed & Ben-Salha, 2024; Li et al., 2022; Wang & Li,
668	2023; Zhang et al., 2021). Consequently, urban planners should explore such
669	measures as promoting cleaner production technologies, implementing emission
670	control regulations, and fostering the adoption of renewable energy sources in
671	industrial zones to effectively curb emissions and improve air quality in urban areas.
672	This study encountered significant challenges to the collection of accurate and
673	comprehensive data on carbon emissions and greenhouse gases. Despite the
674	researcher's diligent effort, many obstacles stood in the way of accessing official data
675	that precisely captured the intricate dynamics of emissions at the regional level. This
676	hampered the comprehensiveness of this study's analysis and limited the insights that
677	could be gained from the complex interplay of factors that drive emissions in specific
678	administrative regions. It is imperative that future investigation should consider high-
679	resolution data on CO ₂ and PM _{2.5} at the county level. To overcome all these

limitations, this study used a time-space multi-sector model. This approach enabled
the quantitative identification and analysis of the underlying reasons for synergistic
emissions.

Given the inherent uncertainties and challenges in acquiring reliable data for 683 specific emission categories—especially carbon emissions from transportation—this 684 study have excluded these from the analysis. This exclusion is essential for aligning 685 with the IPCC framework, which provides a consistent methodology for carbon 686 accounting, and ensures transparency regarding the study's scope and limitations. 687 Also, there is a significant source of uncertainty arises from the MEIC data, 688 particularly in sectors such as coating, printing, and dyeing, where the extensive use 689 of solvents introduces higher variability in emission factors and activity data (N. Wu 690 et al., 2024). These uncertainties may lead to potential overestimations of emissions, 691 692 which is why these sectors were not included in the current study. The imprecision in emission factors is largely due to the lack of precise data on solvent consumption and 693 694 the varying efficiency of emission control technologies across regions. In addition, we 695 acknowledge the uncertainties introduced during the data processing phase, specifically when converting MEIC raster data into county-level estimates. This 696 transformation process, which involves data aggregation and interpolation, introduces 697 spatial uncertainties that can lead to either over- or underestimations of emissions in 698 specific regions. 699

700 6. Conclusion

701	The findings of this study suggest that the coupling coordination degree was a
702	good indication of the success of pollution governance methods. This research
703	highlighted the importance of the synchronized management of CO_2 and $\text{PM}_{2.5}$
704	emissions in regions with high coordination degrees by demonstrating its role in the
705	reduction of environmental pollution. This study therefore underscores the importance
706	of proactive and integrated policies that align with economic and urban development
707	at the regional level, given that they can have a substantial impact on environmental
708	quality overall.
709	The study aimed to examine the relationship between coupling degree and
710	independent variables using a GWR model, with a focus on spatial analysis. The
711	findings revealed spatial heterogeneity in certain variables, particularly transportation
712	and land, as well as area. Positive correlations were found in the southeastern areas
713	(including Ningbo, Shaoxing, Wenzhou, and Taizhou) of the YRD region, while
714	negative correlations were observed in the northern areas for transportation and land.
715	In addition, this study emphasizes the importance of caution in regions with low
716	degrees of coupling coordination and highlights the complexity of pollution dynamics.
717	It is crucial to tailor governance strategies to these regions and to consider the diverse
718	influences from alternative pollution sources and emission factors. In other words,
719	flexibility and adaptability in environmental policies are a necessity. There should be
720	a move away from a one-size-fits-all approach toward nuanced, region-specific
721	interventions.

722	This study was limited by the difficulty experienced in obtaining high-resolution
723	data for CO ₂ and PM _{2.5} , which necessitated a focus on the regional scale. The
724	challenges related to the accuracy and quantification of CO ₂ and PM _{2.5} data impeded
725	the examination of their coupling effects at the city or community scales. These
726	obstacles underscore the urgent need for future research to improve data quality,
727	strengthen synergistic management, and explore multidimensional integrated
728	approaches. As we look toward the future, there is a growing need for more detailed
729	investigations at the micro level, which presents a promising avenue for future
730	research endeavors. Such thorough analyses at the local level can uncover the
731	nuanced factors that influence emissions, providing a solid foundation for specific,
732	focused spatial planning recommendations. Investigations at the micro level can
733	enhance our academic understanding of environmental dynamics and offer
734	environmental dynamics and offers practical insights for policymakers and urban
735	planners working towards synergistic emission reduction goals.
736	The choice of the YRD region as the study area provided an outstanding model,
737	yielding important insights for other regions in China and for the global community.
738	This is particularly the case for developing countries, such as Indonesia, India, and
739	Africa, that are dealing with comparable issues.
740	Acknowledgments

742 2022YFC3800804), the Natural Science Foundation of Shanghai (No. 21ZR1466500),

This paper was supported by the National Key R&D Program of China (No.

741

- the Shanghai Rising-Star Program (No. 22QB1404900), and the Science Foundation
- 744 for the Science and Technology Commission of Shanghai Municipality, China -
- 745 Carbon Peaking and Carbon Neutrality Program (No. 22DZ1207800).
- 746 Thanks to to Bachelor students Jiaqi Peng, Yuchen Shao, Can Cai, and Difei
- 747 Chen from the College of Architecture and Urban Planning at Tongji University for
- 748 their assistance with data preprocessing
- 749 CRediT authorship contribution statement
- 750 Weng In, Chung: Writing original draft, review & editing, Methodology,
- 751 Software, Validation, Formal analysis, Investigation, Data Curation, Visualization.
- 752 Chao, Liu: Conceptualization, Resources, Supervision, Project administration,
- 753 Funding acquisition
- 754 Data availability statement
- 755 The research data collected for this study is referenced in the article.
- 756 **Declaration of competing interest**
- 757 The authors declare that they have no known competing financial interests or
- personal relationships that could have appeared to influence the work reported in this

759 paper

760 References

- Alimujiang, A., & Jiang, P. (2020). Synergy and co-benefits of reducing CO2 and air
- 762 pollutant emissions by promoting electric vehicles—A case of Shanghai. *Energy*
- *for Sustainable Development*, *55*, 181–189.
- 764 https://doi.org/10.1016/j.esd.2020.02.005

703 Alig, D. W., Au, A. I., & Su, D. (2013). Multi-country comparisons of energy	765	Ang, B.	W., Xu, X.	Y., & Su, B.	(2015). Multi-country	comparisons of energy
--	-----	---------	------------	--------------	-----------------------	-----------------------

766 performance: The index decomposition analysis approach. *Energy Economics*,

```
767 47, 68–76. https://doi.org/10.1016/j.eneco.2014.10.011
```

- 768 Ben-Ahmed, K., & Ben-Salha, O. (2024). Assessing the spillover effects of various
- forms of energy on CO2 emissions—An empirical study based on dynamic
- spatial Durbin model. *Heliyon*, *10*(10), e31083.
- 771 https://doi.org/10.1016/j.heliyon.2024.e31083
- Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. (2006). Complex
- networks: Structure and dynamics. *Physics Reports*, 424(4–5), 175–308.
- 774 https://doi.org/10.1016/j.physrep.2005.10.009
- 775 Braspenning Radu, O., Van Den Berg, M., Klimont, Z., Deetman, S., Janssens-
- 776 Maenhout, G., Muntean, M., Heyes, C., Dentener, F., & Van Vuuren, D. P.
- 777 (2016). Exploring synergies between climate and air quality policies using long-
- term global and regional emission scenarios. *Atmospheric Environment*, 140,

779 577–591. https://doi.org/10.1016/j.atmosenv.2016.05.021

- 780 Cai, B., Guo, H., Cao, L., Guan, D., & Bai, H. (2018). Local strategies for China's
- 781 carbon mitigation: An investigation of Chinese city-level CO2 emissions.
- *Journal of Cleaner Production*, *178*, 890–902.
- 783 https://doi.org/10.1016/j.jclepro.2018.01.054
- Cai, W., Zhang, C., Zhang, S., Ai, S., Bai, Y., Bao, J., Chen, B., Chang, N., Chen, H.,
- 785 Cheng, L., Cui, X., Dai, H., Danna, B., Di, Q., Dong, W., Dong, W., Dou, D.,
- Fan, W., Fan, X., ... Gong, P. (2021). The 2021 China report of the Lancet
- 787 Countdown on health and climate change: Seizing the window of opportunity.
- 788 *The Lancet Public Health*, 6(12), e932–e947. https://doi.org/10.1016/S2468-
- 789 2667(21)00209-7
- Chen, M., Liang, L., Wang, Z., Zhang, W., Yu, J., & Liang, Y. (2020). Geographical
- thoughts on the relationship between 'Beautiful China' and land spatial planning.

- *Journal of Geographical Sciences*, *30*(5), 705–723.
- 793 https://doi.org/10.1007/s11442-020-1751-6
- Dong, F., Yu, B., & Pan, Y. (2019). Examining the synergistic effect of CO2
- 795 emissions on PM2.5 emissions reduction: Evidence from China. *Journal of*
- 796 *Cleaner Production*, 223, 759–771. https://doi.org/10.1016/j.jclepro.2019.03.152
- 797 Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K. (2006). 2006 IPCC
- guidelines for national greenhouse gas inventories. Intergovernmental Panel on
- 799 Climate Change IPCC, Institute for Global Environmental Strategies: Hayama,
- 800 Japan. Available online: https://www.ipcc-
- 801 nggip.igeojp/public/2006gl/pdf/4_Volume4/V4_03_Ch3_Representation.pdf
- 802 Fang, C., Wang, S., & Li, G. (2015). Changing urban forms and carbon dioxide
- emissions in China: A case study of 30 provincial capital cities. *Applied Energy*, *158*, 519–531. https://doi.org/10.1016/j.apenergy.2015.08.095
- 805 Geng, G., Liu, Y., Liu, Y., Liu, S., Cheng, J., Yan, L., Wu, N., Hu, H., Tong, D.,
- 806 Zheng, B., Yin, Z., He, K., & Zhang, Q. (2024). Efficacy of China's clean air
- actions to tackle PM2.5 pollution between 2013 and 2020. *Nature Geoscience*,

808 17, 987–994. https://doi.org/10.1038/s41561-024-01540-z

- 609 Ghosh, B., Barman, H. C., Ghosh, S., Habib, M. M., Mahato, J., Dayal, L., Mahato, S.,
- 810 Sao, P., Murmu, A. C., Chowdhury, A. D., Pramanik, S., Biswas, R., Kumar, S.,
- & Padhy, P. K. (2024). Air pollution status and attributable health effects across
- the state of West Bengal, India, during 2016–2021. *Environmental Monitoring*

```
813 and Assessment, 196(2), 165. https://doi.org/10.1007/s10661-024-12333-7
```

- Guan, Y., Xiao, Y., Rong, B., Lu, W., Zhang, N., & Qin, C. (2023). Assessing the
- synergy between CO2 emission and ambient PM2.5 pollution in Chinese cities:
- 816 An integrated study based on economic impact and synergy index.
- 817 Environmental Impact Assessment Review, 99, 106989.
- 818 https://doi.org/10.1016/j.eiar.2022.106989

- 819 Huang, C.-T., & Tsai, K.-H. (2014). Synergy, environmental context, and new
- 820 product performance: A review based on manufacturing firms. *Industrial*
- 821 *Marketing Management*, *43*(8), 1407–1419.
- 822 https://doi.org/10.1016/j.indmarman.2014.06.010
- Jia, W., Li, L., Lei, Y., & Wu, S. (2023). Synergistic effect of CO2 and PM2.5
- emissions from coal consumption and the impacts on health effects. *Journal of*
- *Environmental Management*, *325*, 116535.
- 826 https://doi.org/10.1016/j.jenvman.2022.116535
- Jiang, F., Chen, B., Li, P., Jiang, J., Zhang, Q., Wang, J., & Deng, J. (2023). Spatio-

temporal evolution and influencing factors of synergizing the reduction of

pollution and carbon emissions—Utilizing multi-source remote sensing data and

GTWR model. *Environmental Research*, 229, 115775.

- 831 https://doi.org/10.1016/j.envres.2023.115775
- Kang, T., Wang, H., He, Z., Liu, Z., Ren, Y., & Zhao, P. (2023). The effects of urban
 land use on energy-related CO2 emissions in China. *Science of The Total*

Environment, *870*, 161873. https://doi.org/10.1016/j.scitotenv.2023.161873

- 835 Kumar, S., Mishra, S., & Singh, S. K. (2020). A machine learning-based model to
- estimate PM2.5 concentration levels in Delhi's atmosphere. *Heliyon*, 6(11),
- e05618. https://doi.org/10.1016/j.heliyon.2020.e05618
- 838 Li, L., Mi, Y., Lei, Y., Wu, S., Li, L., Hua, E., & Yang, J. (2022). The spatial
- differences of the synergy between CO2 and air pollutant emissions in China's
- 840 296 cities. *Science of The Total Environment*, *846*, 157323.
- 841 https://doi.org/10.1016/j.scitotenv.2022.157323
- 842 Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., Tong, D., Zheng, B., Cui, H.,
- 843 Man, H., Zhang, Q., & He, K. (2017). Anthropogenic emission inventories in
- 844 China: A review. *National Science Review*, 4(6), 834–866.
- 845 https://doi.org/10.1093/nsr/nwx150

- Li, N., Chen, W., Rafaj, P., Kiesewetter, G., Schöpp, W., Wang, H., Zhang, H., Krey,
- 847 V., & Riahi, K. (2019). Air Quality Improvement Co-benefits of Low-Carbon
- 848 Pathways toward Well Below the 2 °C Climate Target in China. *Environmental*
- 849 Science & Technology, 53(10), 5576–5584.
- 850 https://doi.org/10.1021/acs.est.8b06948
- Li, Q., Wang, Y., Chen, W., Li, M., & Fang, X. (2021). Does improvement of
- industrial land use efficiency reduce PM2.5 pollution? Evidence from a
- spatiotemporal analysis of China. *Ecological Indicators*, *132*, 108333.
- 854 https://doi.org/10.1016/j.ecolind.2021.108333
- 855 Li, M., Zhang, Q., Zheng, B., Tong, D., Lei, Y., Liu, F., Hong, C., Kang, S., Yan, L.,
- Zhang, Y., Bo, Y., Su, H., Cheng, Y., & He, K. (2019). Persistent growth of
- anthropogenic non-methane volatile organic compound (NMVOC) emissions in
- 858 China during 1990–2017: Drivers, speciation and ozone formation
- potential. Atmospheric Chemistry and Physics, 19, 8897-
- 860 8913. https://doi.org/10.5194/acp-19-8897-2019
- 861 Lin, C. Q., Liu, G., Lau, A. K. H., Li, Y., Li, C. C., Fung, J. C. H., & Lao, X. Q.
- 862 (2018). High-resolution satellite remote sensing of provincial PM2.5 trends in
- China from 2001 to 2015. *Atmospheric Environment*, 180, 110–116.
- 864 https://doi.org/10.1016/j.atmosenv.2018.02.045
- Liu, Z., Fang, C., Sun, B., & Liao, X. (2023). Governance matters: Urban expansion,
 environmental regulation, and PM2.5 pollution. *Science of The Total*
- 867 Environment, 876, 162788. https://doi.org/10.1016/j.scitotenv.2023.162788
- Long, Y., Jiang, Y., Chen, P., Yoshida, Y., Sharifi, A., Gasparatos, A., Wu, Y.,
- Kanemoto, K., Shigetomi, Y., & Guan, D. (2021). Monthly direct and indirect
- greenhouse gases emissions from household consumption in the major Japanese
- cities. *Scientific Data*, 8(1), 301. https://doi.org/10.1038/s41597-021-01086-4
- 872 Lu, Z., Huang, L., Liu, J., Zhou, Y., Chen, M., & Hu, J. (2019). Carbon dioxide
- 873 mitigation co-benefit analysis of energy-related measures in the Air Pollution

- 874 Prevention and Control Action Plan in the Jing-Jin-Ji region of China. *Resources*,
- 875 *Conservation & Recycling: X, 1,* 100006.
- 876 https://doi.org/10.1016/j.rcrx.2019.100006
- 877 Ma, Z., Hu, X., Sayer, A. M., Levy, R., Zhang, Q., Xue, Y., Tong, S., Bi, J., Huang,
- L., & Liu, Y. (2016). Satellite-Based Spatiotemporal Trends in PM 2.5
- 879 Concentrations: China, 2004–2013. *Environmental Health Perspectives*, 124(2),

880 184–192. https://doi.org/10.1289/ehp.1409481

- McCracken, T., Chen, P., Metcalf, A., & Fan, C. (2024). Quantifying the impacts of
- 882 Canadian wildfires on regional air pollution networks. *Science of The Total*
- 883 *Environment*, 928, 172461. https://doi.org/10.1016/j.scitotenv.2024.172461
- MEIC Model. (2023). Multi-resolution emission inventory model for climate and air
 pollution research. http://meicmodel.org.cn
- 886 Ministry of Ecology and Environment of the People's Republic of China . (2022).
- 887 2021 Bulletin of China's Ecological and Environmental Conditions.
- https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202205/P02022060833820287077
 7.pdf
- 890 OpenStreetMap. (2024). OSM History Dump
- 891 https://www.openstreetmap.org/#map=11/31.2325/121.3488
- 892 Rahman, R. A., White, B., & Ma, C. (2024). The Effect of Growth, Deforestation,
- 893 Forest Fires, and Volcanoes on Indonesian Regional Air Quality. *Journal of*
- 894 *Cleaner Production*, 142311. https://doi.org/10.1016/j.jclepro.2024.142311
- 895 Shahbaz, M., Loganathan, N., Muzaffar, A. T., Ahmed, K., & Ali Jabran, M. (2016).
- 896 How urbanization affects CO 2 emissions in Malaysia? The application of
- 897 STIRPAT model. *Renewable and Sustainable Energy Reviews*, 57, 83–93.
- 898 https://doi.org/10.1016/j.rser.2015.12.096
- 899 Shan, Y., Guan, D., Hubacek, K., Zheng, B., Davis, S. J., Jia, L., Liu, J., Liu, Z.,
- 900 Fromer, N., Mi, Z., Meng, J., Deng, X., Li, Y., Lin, J., Schroeder, H., Weisz, H.,

901	& Schellnhuber, H. J. (2018). City-level climate change mitigation in China.
902	Science Advances, 4(6), eaaq0390. https://doi.org/10.1126/sciadv.aaq0390
903	Shan, Y., Guan, D., Liu, J., Mi, Z., Liu, Z., Liu, J., Schroeder, H., Cai, B., Chen, Y.,
904	Shao, S., & Zhang, Q. (2017). Methodology and applications of city level CO2
905	emission accounts in China. Journal of Cleaner Production, 161, 1215–1225.
906	https://doi.org/10.1016/j.jclepro.2017.06.075
907	Shan, Y., Guan, Y., Hang, Y., Zheng, H., Li, Y., Guan, D., Li, J., Zhou, Y., Li, L., &
908	Hubacek, K. (2022). City-level emission peak and drivers in China. Science
909	Bulletin, 67(18), 1910-1920. https://doi.org/10.1016/j.scib.2022.08.024
910	Shan, Y., Liu, J., Liu, Z., Shao, S., & Guan, D. (2019). An emissions-socioeconomic
911	inventory of Chinese cities. Scientific Data, 6(1), 190027.
912	https://doi.org/10.1038/sdata.2019.27
913	Song, R., Hu, Y., & Li, M. (2021). Chinese Pattern of Urban Development Quality
914	Assessment: A Perspective Based on National Territory Spatial Planning
915	Initiatives. Land, 10(8), 773. https://doi.org/10.3390/land10080773
916	U.S. Environmental Protection Agency (EPA). (2024). Inventory of U.S. Greenhouse
917	Gas Emissions and Sinks: 1990-2022.
918	https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-
919	sinks
920	Wang, H., Gu, K., Dong, F., & Sun, H. (2024). Does the low-carbon city pilot policy
921	achieve the synergistic effect of pollution and carbon reduction? Energy &
922	Environment, 35(2), 569-596. https://doi.org/10.1177/0958305X221127018
923	Wang, J., & Azam, W. (2024). Natural resource scarcity, fossil fuel energy
924	consumption, and total greenhouse gas emissions in top emitting countries.
925	Geoscience Frontiers, 15(2), 101757. https://doi.org/10.1016/j.gsf.2023.101757
926	Wang, S., & Li, M. (2023). Impact of spatial structure of urban agglomerations on
927	PM2.5 pollution : Based on resource misallocation. <i>Heliyon</i> , 9(3), e14099.
928	https://doi.org/10.1016/j.heliyon.2023.e14099

929	Wang, S., Liu, X., Zhou, C., Hu, J., & Ou, J. (2017). Examining the impacts of
930	socioeconomic factors, urban form, and transportation networks on CO2
931	emissions in China's megacities. Applied Energy, 185, 189–200.
932	https://doi.org/10.1016/j.apenergy.2016.10.052
933	Wang, Z., Lu, QC., He, HD., Wang, D., Gao, Y., & Peng, ZR. (2017).
934	Investigation of the spatiotemporal variation and influencing factors on fine
935	particulate matter and carbon monoxide concentrations near a road intersection.
936	Frontiers of Earth Science, 11(1), 63-75. https://doi.org/10.1007/s11707-016-
937	0564-5
938	world Health Organization. (2019). World health statistics 2019: Monitoring health
939	for the SDGs, sustainable development goals. World Health
940	Organization. https://iris.who.int/handle/10665/324835
941	Wu, N., Geng, G., Xu, R., Liu, S., Liu, X., Shi, Q., Zhou, Y., Zhao, Y., Liu, H., Song,
942	Y., Zheng, J., Zhang, Q., & He, K. (2024). Development of a high-resolution
943	integrated emission inventory of air pollutants for China. Earth System Science
944	Data, 16(6): 2893-2915.
945	Wu, Z., Woo, Su-Han, Oh, Jin-Ho, & Lai, Po-Lin. (2024). Temporal and spatial
946	effects of manufacturing agglomeration on CO2 emissions: Evidence from South
947	Korea. Humanities and Social Sciences Communications, 11(1), 1–14.
948	Xia, C., Dong, Z., Wu, P., Dong, F., Fang, K., Li, Q., Li, X., Shao, Z., & Yu, Z.
949	(2022). How urban land-use intensity affected CO2 emissions at the county level:
950	Influence and prediction. Ecological Indicators, 145, 109601.
951	https://doi.org/10.1016/j.ecolind.2022.109601
952	Yang, Y., Shi, M., Liu, B., Yi, Y., Wang, J., & Zhao, H. (2024). Contribution of
953	ecological restoration projects to long-term changes in PM2.5. Ecological
954	Indicators, 159, 111630. https://doi.org/10.1016/j.ecolind.2024.111630
955	Yang, Y., Xie, B., Lyu, J., Liang, X., Ding, D., Zhong, Y., Song, T., Chen, Q., &
956	Guan, Q. (2024). Optimizing urban functional land towards "dual carbon" target:

- 957 A coupling structural and spatial scales approach. *Cities*, 148.
- 958 https://kns.cnki.net/kcms2/article/abstract?v=Xhw-
- 959 7KfLOFn7nZG28zqExe159HI8AnzJa36smIQr yY8uZgshJ9Bped8cnKcxNfKR-
- 960 QaTImMVbSQn0ocNDtKnUxUDhcufqxidb9gkqwn6EYvIWBGdm48pyTt2WS
- 961 sPWxM O3Zo-FqXRSJcyZzbMFx8g==&uniplatform=NZKPT&language=gb
- 962 Yi, H., Zhao, L., Qian, Y., Zhou, L., & Yang, P. (2022). How to achieve synergy
- between carbon dioxide mitigation and air pollution control? Evidence from
 China. *Sustainable Cities and Society*, 78, 103609.
- 965 https://doi.org/10.1016/j.scs.2021.103609
- 266 Zeng, Q.-H., & He, L.-Y. (2023). Study on the synergistic effect of air pollution
- 967 prevention and carbon emission reduction in the context of "dual carbon":
- 968 Evidence from China's transport sector. *Energy Policy*, 173, 113370.
- 969 https://doi.org/10.1016/j.enpol.2022.113370
- Zeng, Y., Cao, Y., Qiao, X., Seyler, B. C., & Tang, Y. (2019). Air pollution reduction
 in China: Recent success but great challenge for the future. *Science of The Total*
- 972 *Environment*, 663, 329–337. https://doi.org/10.1016/j.scitotenv.2019.01.262
- 273 Zhang, Y., Chen, X., Mao, Y., Shuai, C., Jiao, L., & Wu, Y. (2021). Analysis of
- resource allocation and PM2.5 pollution control efficiency: Evidence from 112
- 975 Chinese cities. *Ecological Indicators*, *127*, 107705.
- 976 https://doi.org/10.1016/j.ecolind.2021.107705
- 977 Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi,
- 978 J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., & Zhang, Q. (2018). Trends
- in China's anthropogenic emissions since 2010 as the consequence of clean air
- 980 actions. *Atmospheric Chemistry and Physics*, 18(19), 14095–14111.
- 981 https://doi.org/10.5194/acp-18-14095-2018
- 282 Zhou, H., Jiang, M., Huang, Y., Bai, Y., & Wang, Q. (2023). Spatial effects of air
- 983 pollutants reduction on CO2 emissions. *Environmental Science and Pollution*
- 984 *Research*, 30(30), 75213–75224. https://doi.org/10.1007/s11356-023-27708-5