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Study of the Coupling Effect of CO2 and PM2.5 Emissions: A Case Study of1

Yangtze River Delta, China2

【Abstract】3

Many countries are confronted with the dual challenge of mitigating CO24

emissions and controlling PM2.5 pollution, attributed to the impacts of global climate5

change. This study explores the spatio-temporal pattern of the coupling effect between6

CO2 emissions and PM2.5 pollution by conducting a case study of the Yangtze River7

Delta (YRD) region of China and aims to identify the urban influencing factors that8

contribute to this coupling effect. Utilizing a coupled coordination model, this study9

conducted a spatio-temporal analysis of CO2 emissions and PM2.5 concentrations from10

2008 to 2020.The model assessed the year-by-year coupling coordination degrees of11

CO2 and PM2.5 emissions in each of the five provinces in the YRD region.12

This study’s three main findings are the following: (1) The overall coupling13

coordination between CO2 and PM2.5 emissions exhibited a declining trend from 201314

to 2017, followed by a rebound in 2018. Most cities experienced their highest degree15

of coupling in 2020. (2) Of 41 cities in the YRD region, only 10 have achieved a state16

of coordinated development. This finding suggests that approximately 24% of the17

YRD region attained a positive degree of coordination. (3) The megacity Shanghai18

has achieved a stage characterized by high-quality coordination, emphasizing the19

city’s significant role in mitigating CO2 emissions and managing PM2.5 pollution in20

the region. In addition, the analysis of urban influencing factors revealed a significant21
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correlation between several key urban factors, including land area, green space and22

water area, road network, technical development, and industrial structure.23

This study recommends that cities aiming to reduce CO2 emissions and control24

PM2.5 pollution consider initiatives that address the coupling effect, such as25

optimizing industrial land use and prioritizing spatial planning strategies. The26

selection of the YRD region as the study area provides an exemplary model that offers27

implications not only for other regions in China but also for other countries that face28

similar issues.29

【 Keywords: 】 PM2.5, CO2, coupling effect, Yangtze River Delta, carbon30

mitigation, carbon neutrality31
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1. Introduction32

The primary driver of climate change is the ever-increasing release of greenhouse33

gases, with carbon dioxide (CO2) being the main culprit. As a result, CO2 emission34

and particulate matter (PM2.5) concentration have become a significant concern for35

nations that are working towards mitigating the negative impacts of air pollution and36

climate change. Developing countries’ primary sources of greenhouse gases and air37

pollution are CO2 and PM2.5. These emissions are driven by the rapid growth of their38

economies, industrialization, and their continued reliance on conventional energy39

sources (World Health Organization, 2019). Air pollution has been further40

exacerbated by the rapid expansion of populations in these regions, leading to41

increased emissions in countries such as Indonesia, India, and China (Ghosh et al.,42

2024; Rahman et al., 2024; Zeng et al., 2019). The two nations with the highest43

emissions rates, China and India, have been making significant efforts to mitigate44

greenhouse gas emissions and manage air particulate matter, and their experiences45

have highlighted the major challenges faced by developing nations in addressing these46

global issues (Kumar et al., 2020; Wang & Azam, 2024).47

A number of climate-related studies have found a coupling effect have48

demonstrated a coupling effect between PM2.5 and CO2, highlighting the49

interconnectedness of these two pollutants. For example, Dong et al. (Dong et al.,50

2019) found that the reduction of CO2 emissions can lead to a substantial decline in51

PM2.5 emissions. The Intergovernmental Panel on Climate Change (IPCC) found that52
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there were co-benefits when CO2 and PM2.5 were viewed as homogeneous (Cai et al.,53

2021). Other studies proved that CO2 and PM2.5 were homogeneous and synchronous54

by testing both in a model and finding that efforts to reduce CO2 significantly55

contributed to a decrease in PM2.5 (Braspenning Radu et al., 2016; Guan et al., 2023;56

Jia et al., 2023). Furthermore, research has identified a significant synergistic effect57

between CO2 and PM2.5 from coal consumption: These studies found that coupling58

efforts to reduce PM2.5 from coal consumption could have profound impacts on public59

health (Jia et al., 2023).60

Past research that used spatial analysis identified a correlation between CO2 and61

PM2.5 emissions and shed light on the mechanism of carbon pollution homogeneity,62

investigations into the coordinated coupling of CO2 and PM2.5 at the spatial scale have63

been relatively scarce. This shortage of studies can be attributed primarily to64

inadequate data availability and quantifiability, and to the need for more research and65

application paradigms that are both standardized and reflective of local characteristics.66

These intertwined factors collectively cause a bottleneck in research efforts.67

Furthermore, past studies predominantly concentrated on the regional level and68

broader, with the highest resolution typically limited to administrative divisions at the69

county level. This limitation has made it challenging to fully understand the coupling70

dynamics between the two emissions in urban settings. To address these gaps, this71

study aims to analyze the spatial patterns of CO2 and PM2.5 emissions and identify the72
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spatial driving factors that influence the coupling degree of CO2 and PM2.5 emissions73

in the YRD region.74

2. Literature Review75

2.1 Research progress in spatial on greenhouse gases (CO2) and air pollution76

(PM2.5)77

The primary greenhouse gas that originates from human activities in the78

atmosphere is CO2, which constitutes 70% of urban greenhouse gas emissions (U.S.79

Environmental Protection Agency, 2024.). Simultaneously, the predominant80

atmospheric pollutant, PM2.5, accounted for 45% of the total days when recommended81

levels were exceeded, surpassing other pollutants, such as O3, PM10, NO2, and CO,82

which constituted 41.7%, 12.8%, 0.7%, and less than 0.1%, respectively (Ministry of83

Ecology and Environment of the Peoples Republic of China, 2021). The objective of84

the “The 14th Five-Year Plan of the People’s Republic of China” is to synergistically85

reduce greenhouse gases and atmospheric pollutants to achieve high-quality86

development (Chen et al., 2020). Nevertheless, few research has focused on the theory87

of a synergy or coupling effect between CO2 and PM2.5.88

Previous studies that focused on the synergistic reduction of CO2 emissions and89

various atmospheric pollutants concentrated on two primary domains. First, several90

studies focused on the implementation of measures originating from different91

emission sources or sectors. These measures, such as technological advancements and92

industrial process enhancements, were aimed at concurrently curbing emissions of93
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greenhouse gases and pollutants, thus promoting sustainable environmental protection94

and a climate change response (Li et al., 2022; Zeng & He, 2023). Research about95

emission sectors was relatively advanced and commonly employed the four sectors96

that had been identified by the IPCC to analyze carbon emissions associated with97

various economic activities, namely, energy, industry, agricultural land use, and waste98

(Eggleston, 2006).99

Second, several studies concentrated on the synergy of emission reduction efforts100

in specific regions and spaces. This domain was characterized by a clear geographical101

or spatial scale perspective, and the research aim was to optimize emission reduction102

strategies by comprehensively considering emissions from different sources and their103

interactions to minimize impacts on the atmosphere (Alimujiang & Jiang, 2020; Li et104

al., 2019). The spatial scale was categorized as global, regional, local, and community,105

and studies revealed correlations between CO2 and PM2.5 in each category. The106

underlying cause of this correlation was attributed to the shared source of carbon107

pollution.108

Both the above research domains have been instrumental in driving the109

development of emission reduction technologies and policies to address climate110

change and improve atmospheric quality. However, despite their significance, the111

advancement of spatial research in these areas has faced obstacles. Limited data112

granularity and the absence of standardized local research and application paradigms113

have hindered comprehensive investigations of the spatial dynamics of greenhouse114
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gases and atmospheric pollutants. To meet the increasing global and domestic115

demands for carbon neutrality and clean air environments, urgent research on the116

spatial co-reduction of CO2 and PM2.5 is needed. Such research can provide a more117

precise understanding of the distribution patterns and interaction mechanisms of these118

emissions at different spatial scales, thus laying a solid foundation for the119

development of more scientifically sound and targeted emission reduction strategies.120

2.1.1 Spatial research on CO2 emission reduction121

Previous research has elucidated the relationship between CO2 emissions and122

various urban variables, demonstrating that population density, economic123

development, and industrial composition exert significant influences on carbon124

emissions. In South Korea, an inverted U-shaped relationship was observed between125

manufacturing agglomeration and carbon emissions. Specialized agglomeration was126

found to decrease both local and neighboring emissions, whereas diversified127

agglomeration primarily benefited local emissions in the short term but also128

contributed to long-term local emission reductions (Z. Wu et al., 2024). Specifically,129

population density and economic prosperity exhibited positive correlations with130

carbon emissions (Guan et al., 2023), while the impact of industrial structure and131

spatial factors varied across regions (Lu et al., 2019; Zhou et al., 2023). Policy132

implications drawn from these findings suggest that fostering an advanced industrial133

structure, optimizing land use, and modifying energy consumption patterns can134

effectively mitigate CO2 emissions, with particular relevance for China.135



8

Studies of economic factors revealed a significant negative correlation between136

GDP per capita and the interaction between urbanization, population, and CO2137

emissions. Some scholars also employed models such as the Stochastic Impacts by138

Regression on Population, Affluence, and Technology (STIRPAT) model and139

Geographical and Temporal Weighted Regression (GTWR) model to investigate the140

spatiotemporal heterogeneity of driving factors, including low-carbon policies, air141

pollutant prevention and control policies, and industrial structure on the synergistic142

effects of pollution reduction and carbon reduction (Jiang et al., 2023; Shahbaz et al.,143

2016).144

2.1.2 Spatial research on PM2.5 reduction145

China has made notable progress in curbing PM2.5 pollution by implementing146

several concentration reduction and control measures. However, PM2.5 concentration147

in urban areas remains an ongoing concern and subject of study. Researchers have148

identified certain key factors that impact urban PM2.5, including the distribution of149

pollution sources throughout the city, traffic patterns, and the presence of green150

spaces (Long et al., 2021). Despite ongoing efforts, significant obstacles remain,151

largely due to the sparse distribution of environmental monitoring stations across the152

country, with a pronounced scarcity of such stations in smaller and medium-sized153

urban areas. Moreover, the temporal resolution of the monitoring data frequently154

suffer from a lack of precision. This imprecision has introduced inaccuracies into the155

scholarly discourse on the spatiotemporal dynamics of PM2.5.156
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As cities increasingly pursued high-quality development and refined their air157

pollution control efforts, identifying spatial and temporal patterns in urban PM2.5158

concentration became imperative. Such identification is essential for reducing PM2.5159

levels through synergistic planning and management, thus facilitating comprehensive160

compliance with air quality standards in subsequent stages. Some studies emphasized161

the strong correlation between greenhouse gas emissions and atmospheric pollutants,162

which results in robust coupling effects between air quality and climate-related163

measures. This correlation highlights the potential for devising cost-effective air164

pollution policies through an integrated approach (Ang et al., 2015). Studies also165

underscored the significance of low-carbon policies, enhancing the public166

transportation infrastructure, and considering various socio-economic factors to167

achieve effective reductions in PM2.5 and CO2 emissions (Huang & Tsai, 2014; Wang168

et al., 2024). Some suggested that a comprehensive approach should be adopted to169

address the interconnected nature of environmental, economic, and social factors,170

ultimately working toward the attainment of sustainable and low-carbon urban171

development (Yi et al., 2022).172

2.2 Coupling effect and driving factors173

Coupling theory refers to the interaction between two or more systems or174

components, describing and analyzing the transmission and conversion of energy and175

information between systems, as well as the coordination and adjustment between176

systems (Boccaletti et al., 2006). When coupling theory is extended from physics to177
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other fields, the analysis process involves the following steps: (1) identify and178

quantify the various systems involved in environmental problems (e.g., natural179

systems, social systems, economic systems) and the connections and impacts between180

them; (2) establish mathematical models and calculation methods to simulate and181

predict the dynamic change process and results of environmental problems and182

evaluate the effects and costs of different solutions; (3) find optimal solutions to183

achieve coordinated development of various systems and improve problem184

management efficiency and impact; (4) monitor and evaluate the implementation of185

solutions to maintain the stability and sustainability of each system (McCracken et al.,186

2024).187

Both CO2 and PM2.5 exhibit relatively stable chemical characteristics, and their188

interactions in the air are not readily apparent. Their coupling characteristics primarily189

stem from similar emission sources and physical spatial diffusion. More recent studies190

of the coupling coordination of CO2 and PM2.5 have focused primarily on spatial191

disparities, policy impacts, and driving factor analysis (Fang et al., 2015; Wang et al.,192

2017; Wang et al., 2017). These studies aim to explore the emission characteristics of193

CO2 and PM2.5 at the provincial level, the influence of policy measures on emission194

reduction effects, and the key factors that cause change in emissions.195

In recent years, applied research has gradually increased, with more studies196

focusing on the reduction of coupling coordination in atmospheric pollutants and197

greenhouse gases. Among such research, many foreign studies have predominantly198



11

employed modeling simulations to investigate the effectiveness and synergistic effects199

of various emission reduction strategies (Cai et al., 2021). This approach enables the200

simulation of emission scenarios and environmental impacts under different policy201

contexts, thus providing scientific evidence for policymakers. Concurrently, some202

studies have evaluated the cost-effectiveness and synergistic effects of China’s air203

quality planning and greenhouse gas control measures from the perspective of input-204

output analysis (Yi et al., 2022). This perspective underscores the interaction between205

the economy and the environment and aims to identify policy scenarios that can206

achieve optimal synergistic benefits at minimal cost. Such considerations are207

particularly important for developing countries that have limited resources.208

Studies of the factors that drive various forms of pollution have had varied209

findings. Considering the unique characteristics of China’s economic development,210

existing research has identified several key factors that drive CO2 emission. These211

factors include industrial structure, property rights structure, energy composition,212

level of urbanization, government regulations, and more (Fang et al., 2015).213

However, regarding the driving factors that influence air pollutants, such as214

PM2.5, relatively few studies have concentrated on the determinants of these pollutants’215

emission efficiency. Some research studies have identified factors that potentially216

affect PM2.5 emission efficiency, including population density, economic development217

levels, environmental regulatory measures, and the degree of industrialization. In218

addition, studies have attempted to measure the impact of natural ecological factors,219
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such as wind speed, precipitation, and urban green spaces, on measures to mitigate220

urban PM2.5 emission (Wang et al., 2017). Some found ecological restoration projects221

prohibited PM2.5 growth (Yang, Shi, et al., 2024). For a more comprehensive222

understanding, further in-depth research is necessary to explain the specific223

mechanisms by which these factors affect PM2.5 emissions and their evolving trends224

in different regions and periods.225

2.3 Multiple data sources and analysis226

Many studies have focused on national, provincial, and urban agglomeration227

levels, leaving a research gap at the level of city and neighborhood. Some researchers228

believe that as China transitions towards a more localized approach to emissions229

issues, it is necessary to analyze large-scale data (e.g., measurements at the provincial230

level) to accurately reflect the actual state of CO2 and PM2.5 emissions across the231

country. Access to accurate air quality data at the county and municipal levels is232

crucial for developing effective emission reduction strategies. While national and233

provincial-level analyses provided macro-level insights into overall emission trends234

and policy implications, more robust analysis that accurately targets and assesses235

specific emission sources in different regions is required. Localized data allows for236

the formulation of customized regulations based on the varying nature and influencing237

factors of emissions in various cities and counties. Factors that play a role in these238

differences include industrial activities, traffic patterns, and geographical conditions.239
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The primary source of information about CO2 and PM2.5 levels has been satellite,240

statistical, and monitoring data. Such data has been used to extract meaningful241

information, including spatiotemporal distribution, trends, and source-sink analysis.242

Satellite remote sensing data has been of crucial importance to the observation of243

carbon emissions and PM2.5 concentrations (Lin et al., 2018; Ma et al., 2016). Such244

data provides comprehensive coverage and flexibility in spatiotemporal resolution,245

offering multi-scale observations on a global level or the level of a specific area to246

reflect the spatiotemporal distribution characteristics of pollutants.247

Statistical data involves the use of economic, energy, industrial, and248

demographic information from a country’s census. Combined with the emission factor249

method, these statistics are used to calculate carbon emissions in specific regions.250

Monitoring data encompasses information obtained through on-site observation and251

measurement, including exhaust emission, meteorological, and air quality data. Such252

data can be used to directly measure emissions from carbon emission sources, such as253

industrial, transportation, and energy-production emissions. Monitoring data can also254

be utilized to evaluate greenhouse gas concentrations and air quality in the255

atmosphere, providing insights into environmental pollution. Due to the limitations of256

data, such as its difficulty to assess and often lower resolution, some studies have257

resorted to using satellite imagery, statistical analysis, and monitoring data to gain a258

more comprehensive and accurate understanding of carbon emissions, allowing for259

the analysis of emission trends, source and sink distributions, and environmental260
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impacts. Numerous studies have explored synergistic emission reduction strategies261

concerning greenhouse gas emissions and various atmospheric pollutants, primarily262

focusing on provincial or metropolitan scales. Nevertheless, few, if any, have263

undertaken research at the city scale to specifically address the synergistic emission264

reduction of CO2 and PM2.5 in urban areas. Additionally, more exploration is needed265

of approaches to spatial planning that aim to achieve synergistic emission reduction in266

the pursuit of carbon neutrality goals. Therefore, the primary objective of this study is267

to investigate the spatial and temporal patterns and the coupling characteristics of CO2268

and PM2.5 in urban environments. This research aims to clarify the influencing269

mechanisms through which key control factors influence synergistic emission270

reduction efforts at the city level.271

3. Models and data sources272

3.1 Study Area273

The YRD (Figure 1) is one of the regions with the highest concentration of274

industry and the most rapid economic development in China. The YRD region has275

been designated a critical area for pollution reduction and carbon mitigation in terms276

of the Beautiful China initiative. Controlling fine particulate matter is a primary focus277

of this program, and vigorous efforts are directed at the coordinated reduction of278

multiple pollutants.279

The YRD region is located between the longitudes of 114°54' and 123°10' east280

and latitudes of 27°02' and 35°20' north. YRD typically encompasses parts of China’s281
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Shanghai, Jiangsu, Zhejiang, and Anhui provinces. Specifically, the YRD region282

includes the following cities: Shanghai; Jiangsu cities of Nanjing, Wuxi, Changzhou,283

Suzhou, Nantong, Yancheng, Yangzhou, Zhenjiang, and Taizhou; Zhejiang cities of284

Hangzhou, Ningbo, Jiaxing, Huzhou, Shaoxing, Jinhua, Zhoushan, and Taizhou; and285

the Anhui cities of Hefei, Wuhu, Ma’anshan, Tongling, Anqing, Chuzhou, Chizhou,286

and Xuancheng. According to data from the Seventh National Census Bulletin, by the287

end of 2020, the permanent resident population of the YRD had reached 235 million,288

accounting for 16.7% of the total population of China.289

The YRD region is a cornerstone of China’s economic prowess and plays a290

pivotal role in the nation’s financial, technological, and trade sectors. Boasting major291

metropolitan areas like Shanghai and Hangzhou, the YRD has emerged as an292

innovation hub, driving technological advancement and contributing substantially to293

China’s global competitiveness. However, the region’s rapid urbanization and294

burgeoning population have created environmental challenges, necessitating robust295

policy making to control these issues.296

According to the Air Pollution Prevention and Control Action Plan, issued by the297

State Council of China in 2013, PM2.5 pollution has been effectively mitigated in the298

YRD region. However, further efforts are required to reduce emissions. The average299

PM2.5 level in the YRD was 41 μg/m3 in 2019, surpassing the World Health300

Organization’s standard of 10 μg/m3. Simultaneously, the Carbon Peaking and301

Carbon Neutrality Implementation Plan explicitly outlines China’s strategic goal of302
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reducing CO2 emissions. The nation aims to achieve a peak in carbon emissions by303

2030 and attain carbon neutrality by 2060.304

China has implemented stringent environmental control measures in the YRD to305

tackle these challenges. These policies aim to address issues such as air and water306

pollution resulting from rapid industrialization and urbanization. Specific strategies307

include regulating industrial emissions, enhancing energy efficiency, and promoting308

the adoption of green technologies. The selection of the YRD region as the case study309

means that this study can potentially serve as a valuable reference for similar regions310

and provide insights that are applicable to developing countries.311

Figure 1: Map of Yangtze River Delta Megalopolis312

3.2 Data Sources313

The study employed CO2 and PM2.5 data from the Multi-scale Emission314

Inventory of China (MEIC model), a bottom-up model that estimates direct emissions315

across four critical sectors: transportation, industry, residential, and power. These316

emissions were directly released into the atmosphere without intermediary317
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transformations. The same sectors were selected for the PM2.5 data from MEIC v1.4,318

facilitating a comprehensive analysis in conjunction with CO2 data to examine319

emission patterns, their socio-economic determinants, and the degree of coupling320

coordination between these emissions.321

In order to assess the reliability of the MEIC data, the study compared MEIC322

carbon emissions with provincial data from the Carbon Emission Accounts &323

Datasets (CEADs). The deviation between datasets fell within an acceptable range,324

with a total deviation of 8.3% for MEIC data relative to actual figures. Larger325

discrepancies appeared in Zhejiang and Anhui provinces, while Shanghai and Jiangsu326

showed deviations around 5%, which were within expected error margins. Thus,327

deviations in Zhejiang and Anhui were considered during analysis. Given the328

challenges in accessing high-precision, sector-specific CO2 emission data and329

historical PM2.5 data, MEIC data proved to be a relatively reliable source for CO2 and330

PM2.5 emission accounting.331

Additionally, the study incorporated road network data from OpenStreetMap’s332

(OSM) History Dump (2024), providing crucial spatial information on road333

infrastructure. This data was essential for examining emissions relative to334

transportation networks and urban layouts. Socio-economic data from the China335

Statistical Yearbook (National Bureau of Statistics) included indicators such as GDP,336

population, industrial output, and energy use, which allowed for a comprehensive337
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analysis of the socio-economic factors influencing CO2 and PM2.5 emissions across338

sectors. Detailed data sources were provided in Table 1.339

Table 1: Data Source340

Data Type Source Year Description

CO2

Emissions

MEIC v1.4: Multi-

resolution Emission

Inventory for China

(Li et al., 2017; MEIC,

2023; Zheng et al.,

2018)

2008 - 2020 MEIC offers comprehensive, high-

resolution CO2 emissions data for

four sectors: transportation,

industry, residential, and power.

All data are Scope 1 direct

emissions.

PM2.5

Emissions

MEIC v1.4: Multi-

resolution Emission

Inventory for China

(Li et al., 2017; MEIC,

2023; Zheng et al.,

2018)

2008 - 2020 Contains sector-specific PM2.5

emissions data (industry,

residential, transportation)

compatible with CO2 data,

facilitating analysis of emission

synergies.

Road

Network

OpenStreetMap

(OSM) History Dump

(OpenStreetMap,

2024)

2008 - 2020 Spatial data on road infrastructure,

essential for studying emissions in

relation to transportation networks

and urban layout.
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Socio-

economic

Data

China Statistical

Yearbook (National

Bureau of Statistics)

2008 - 2020 Includes key indicators (GDP,

population, industrial output,

energy use), enabling the analysis

of socio-economic factors

influencing CO2 and PM2.5

emissions patterns.

3.3 Models341

This study designed a comprehensive methodological framework( Figure 2) to342

investigate the spatial factors influencing the coupling degree in the YRD region.343

By integrating diverse datasets, the framework provides an exhaustive344

understanding of the spatio-temporal patterns of CO2 and PM2.5 emissions, as well345

as socio-economic variables. Utilizing rigorous spatial autocorrelation, temporal346

trend analysis, and regression techniques, the model identifies key spatial factors347

that significantly impact the coupling degree within the YRD. The insights348

garnered from this framework are of utmost importance for informing the349

development of sustainable policies and fostering regional coordination in the YRD,350

thereby contributing to the advancement of environmental and socio-economic351

research in the region.352
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Figure 2: Methodological framework353

3.3.1 Spatio-temporal visualization of CO2 and PM2.5 distribution354

This study performed descriptive statistics and tests for the distribution of the355

CO2 and PM2.5 data. Outliers were removed, and ArcGIS was employed to conduct356

exploratory spatial data analysis (ESDA) on the emissions of CO2 and PM2.5 in the357

research area. The study simulated the spatial distribution patterns of CO2 and PM2.5358

by using the ArcGIS software.359

3.3.2 Coupling Coordination Model360

In this study, a coupling coordination model was used to analyze the coupling361

between CO2 emissions and PM2.5 concentration. For each year, the annual coupling362

coordination values (D) for the Shanghai CO2 emissions (U1) and PM2.5 concentration363

(U2) systems were calculated. Both systems consisted of four subsystems: electricity,364

industry, residential, and transportation. D values fall within the range of 0 < D < 1,365
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where a higher D value indicates a higher degree of coupling coordination between366

the systems.367

This step is primarily for data processing convenience, where the data is mapped368

within the range of 0 to 1. The formula for calculation is:369

0.01 + (0.99 - 0.01) * (X - Min) / (Max - Min), (1)

where Max and Min represent the maximum and minimum values of the370

data in the respective subsystem.371

1) Calculate the coupling degree (C) and coordination index (T):372

C=2× �1∗�2
(�1+�2)2

1
2, (2)

where U1 and U2 are the weighted sums of the interval values of each373

subsystem. The weights for each subsystem are determined using the SPSS-AU374

entropy method.375

T=β1U1+β2U2, (3)

where β1 and β2 represent the weights of the two systems within the376

current system. In this study, β1 = β2 = 0.5.377

2) Calculate the coupling coordination value:378

D= C ∗ T， (4)

The classification of the coupling degree between CO2 and PM2.5 in the YRD379

based on the D value is presented in Table 2. The stages are: disordered coupling (D =380

0), low coupling (D = 0 to 0.3), antagonistic (D = 0.3 to 0.5), integration (D = 0.5 to381

0.8), and high coupling (D = 0.8 to 1). These stages reflect the correlation strength,382
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ranging from lack of correlation to high correlation between CO2 and PM2.5. This383

classification helps clarify the environmental dynamics that are at work, thus384

facilitating effective policymaking in the YRD region.385

Table 2: Classification and stage characteristics of coupling degree between CO2386

and PM2.5 in YRD387

Classification Subclasses

Seriously unbalanced development 0 < D ≤ 0.2

Moderately unbalanced development 0.2 < D ≤ 0.4

Slightly unbalanced development 0.4 < D ≤ 0.5

Barely balanced development 0.5 < D ≤ 0.6

Favorably balanced development 0.6 < D ≤ 0.8

Superiorly balanced development 0.8 < D ≤ 1

3.3.3 Constructing the STIRPAT model388

The IPAT model comprises the elements I (environmental impact), P389

(population size), A (affluence), and T (technology level). To improve on the limited390

scope of the IPAT model and examine more factors that affect environmental391

elements, Dietz and Rosa extended the IPAT model to create the STIRPAT model.392

The STIRPAT model is an expanded version of the IPAT model.393

3.3.4 Geographically weighted regression394
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Geographically weighted regression (GWR) is a spatial statistical technique that395

extends traditional linear regression models by accounting for spatial variations in396

the relationships between dependent and independent variables. Unlike global397

regression models, which assume a constant relationship across the entire study area,398

GWR recognizes that the strength and nature of these relationships can vary spatially.399

This method is particularly useful in analyzing spatially heterogeneous data, where400

the relationship between variables may change across different locations.401

4. Results402

4.1 Spatial and temporal emissions of CO2 and PM2.5403

This study compared the spatial and temporal emission data of CO2 and PM2.5 in404

the YRD region to the total emissions recorded from 2008 to 2020. The analysis405

revealed that the power, industry, residential, and transportation sectors accounted for406

a significant proportion of CO2 emissions from various sectors in the administrative407

regions. Notably, the industry and power sectors were responsible for most of the CO2408

emissions in the YRD region. Regarding the provinces, Shanghai, Jiangsu, Zhejiang,409

and Anhui collectively contributed over 80% of the CO2 emissions generated by the410

industrial and power sectors. Of these provinces, Shanghai’s industrial sector made a411

higher contribution to emissions when compared to its power sector, while Anhui’s412

residential sector had a higher impact than other provinces’ residential sector This413

finding highlights that the industrial sector in Shanghai alone accounted for more than414

half of the total emissions in the region. Hence, it would be prudent for Shanghai to415
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direct its efforts at industry and adopt a more rational approach to controlling416

industrial emissions to reduce CO2 emissions effectively. Conversely, Anhui province417

should prioritize the residential sector and encourage the adoption of policies that418

promote reduced CO2 emissions resulting from civilian use while considering the419

YRD region’s synergistic policies.420

The findings reveal the following three primary aspects of spatial distribution: (1)421

Cities with high population density and advanced economies, such as Shanghai and422

Suzhou, which are provincial capital cities and transportation hubs, have higher CO2423

emissions. (2) CO2 emissions in the northern regions of the YRD area were notably424

higher than in the south due to the increased demand for residential heating in winter.425

(3) Except for the residential sector, CO2 emissions generally decrease from the426

central region of Shanghai towards its periphery.427

In the period 2011 to 2020, the growth rate of total CO2 emissions has slowed428

down and even decreased, as can be seen in the time distribution. Anhui and Jiangsu429

provinces showed a decline in the transportation sector, while the power sector430

increased considerably. As for PM2.5, the transportation sector in each region had the431

lowest growth rate. Encouragingly, the total amount of PM2.5 has decreased over the432

past ten years, with industrial PM2.5 declining significantly in 2013, marking a turning433

point. These positive changes suggest that the national PM2.5 pollution control policy434

has had an impact. However, most cities in the YRD region were found to have435

experienced an increase in CO2 emissions, and it was worth noting that megacities436
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such as such as Shanghai and Jiaxing and Taizhou in Zhejiang province displayed a437

downward trend in CO2 emissions. Despite this, the distribution of CO2 emissions438

across the region remained largely unchanged over the past decade, with Shanghai439

and surrounding cities continuing to be identified as high-emission areas.440

In 2020, as shown in Figure 3, Shanghai, Suzhou, and Hefei were the cities that441

recorded the highest total emissions of CO2 and PM2.5. Of the four sectors, industry442

was responsible for the highest rate of emissions, mainly in the cities of Shanghai,443

Suzhou, Hangzhou, and Hefei, which are the key economic pillars of their respective444

provinces. The residential sector followed, with the northwestern YRD exhibiting445

significant PM2.5 while lower levels of CO2 emission were observed in the446

southeastern portion. Emissions data for the power sector indicated that Ningbo and447

Zhenjiang had the highest emission rate in both CO2 and PM2.5. Finally, in the448

transportation sector, most of the coastal cities in the YRD had substantial levels of449

PM2.5, with Shanghai having the highest rate of CO2450
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emission.451

Figure 3: 2020 CO2 and PM2.5 emission in YRD region by factors: total, power,452

industry, residential, and transportation453

The Moran’s I analysis revealed that most emissions had positive values,454

indicating a certain level of positive spatial autocorrelation. However, the correlation455

was not strongly pronounced. The PM2.5 emissions generated by the power sector456

displayed a negative Moran’s I value close to zero, accompanied by a higher P-value,457

which indicated the absence of significant spatial autocorrelation in this category. Of458

the four sectors analyzed, industrial CO2 and residential PM2.5 showed significant459

spatial autocorrelation, while traffic CO2 showed relatively significant spatial460

autocorrelation. In contrast, other emission categories and sectors did not show461

substantial spatial autocorrelation based on the analysis.462

Furthermore, the study found that the primary areas with high CO2 emissions463

were in and around Shanghai, indicating a clear spatial relationship in how emissions464
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were distributed across various sectors. Additionally, Anhui province and western465

Zhejiang province showed significantly low levels of emissions. For residential CO2466

emissions, besides Shanghai, high concentrations of emissions were identified in the467

eastern and northern parts of Jiangsu province and northern Anhui province. However,468

there was a noticeable drop in emissions centered around Zhejiang province. While469

industrial CO2 was linked to industrial agglomeration in the YRD region,470

transportation CO2 did not demonstrate a distinct pattern. Furthermore, the471

distribution of hot and cold spots in power CO2 displayed a step-like pattern472

extending from the southwest to the northeast of the YRD region.473

While this study found that Shanghai and its surrounding cities were the primary474

hotspot areas for PM2.5, other sectors showed variations in hotspot distribution. The475

concentration of industrial PM2.5 was primarily in the central part of the YRD, and476

central Anhui province displayed a high-high pattern in industrial PM2.5. This finding477

signals the importance of the Central Anhui as a critical area for targeted478

concentration control efforts. Residential PM2.5 displayed a similar distribution to479

industrial PM2.5, but with a larger proportion of cold spots. This distribution480

emphasized more pronounced spatial clustering, which was highly concentrated in481

central YRD. The distribution in the transportation sector was relatively modest, with482

most cities lacking significant high-high or low-low patterns. Primary hotspots483

persisted in Shanghai and surroundings, where key transportation hubs in the YRD484
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are situated. The distribution in the power sector was more scattered, showcasing a485

multi-point and high pattern across the region.486

4.2 Coupling coordination degree of CO2 and PM2.5487

Between 2008 and 2013, the degree of coupling coordination increased488

consistently, reaching its peak in 2013 (Figure 4). Heightened synergy and improved489

coordination among the factors under consideration characterize this timeframe.490

However, from 2013 to 2016, the trend shifted, and the degree of coupling491

coordination declined. This finding suggests either a transitional phase or a change in492

the relationship between CO2 and PM2.5. Interestingly, a glimmer of recovery was493

observed in 2018, hinting at a potential stabilization or renewed alignment of the494

contributing factors that had been apparent since 2017. The trend observed from 2017495

to 2018 is linked to the implementation of national policies aimed at addressing496

pollutants and environmental concerns. Remarkably, except for 2012 and 2017, the497

coupling coordination degree remained resilient, maintaining a relatively high level498

throughout the rest of the years under observation. The sustained level of coordination499

imply a consistent equilibrium or interdependence among the variables assessed,500

contributing to the system’s overall stability. Nuanced temporal dynamics in the501

coupling coordination degree over these years reveal the intricate interplay of factors502

that influence the observed patterns and trends, highlighting the complexity of the503

system’s behavior.504
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Between 2018 and 2020, Shanghai exhibited a consistent upward trend in505

coupling coordination, progressing from favorably balanced development to506

superiorly balanced development. This positive trend reflects sustained efforts507

towards enhanced synergy and harmonization among its various components and a508

positive coupling development trend in CO2 and PM2.5. Although cities such as509

Nanjing, Wuxi, Xuzhou, and Changzhou experienced minor fluctuations in coupling510

coordination, overall, they fell within the categories of slightly balanced development511

to barely balanced development of the coupling degree. This finding suggested a need512

for further improvement in emission control in these cities. Meanwhile, Suzhou513

observed a continuous enhancement in coupling coordination, progressing from514

barely balanced development to favorably balanced development. This steady upward515

trend in coupling development reflects Suzhou’s sustained efforts towards achieving516

greater synergy and balance among its emissions. However, cities like Lianyungang,517

Huai’an, and Yancheng demonstrated coupling coordination levels classified as518

slightly unbalanced development. This finding indicates the need for greater effort to519

achieve balanced development and coordination. The analysis also revealed a520

spectrum of coupling development ranging from moderately unbalanced to slightly521

unbalanced in cities such as Zhoushan, Lishui, and Huangshan. This finding522

emphasizes the need for intensified policy support and coordinated development523

efforts in these places.524



30

The findings reported above highlight significant regional disparities in coupling525

coordination among different cities. Various factors are at play, such as economic526

development levels, industrial structures, urban planning and management, and527

environmental protection. Notably, Shanghai, as an economically developed city, was528

the only city that experienced a gradual improvement in coupling coordination, which529

resulted in superiorly balanced development. This result suggests that Shanghai has530

stable control over CO2 and PM2.5. In contrast, cities in the central and western areas531

of the YRD, such as Huangshan and Xuancheng, demonstrated relatively lower532

coupling coordination. Some cities were even classified as severely disordered or533

moderately disordered, which could be attributed to insufficient environmental534

resources being committed to the control of CO2 and PM2.5 emissions.535

According to the assessment of the CO2 and PM2.5 coupling coordination degree536

in 2020 (Table 3, Figure 5), only 10 of the 41 cities in the YRD region have achieved537

coordinated development. This observation suggests that roughly 24% of the cities538

have attained a certain degree of coordination, while the remaining 76% still need to539

reach such a status. Shanghai was the only urban center to have achieved a stage of540

high-quality coordination, underscoring its pivotal role in the region. Suzhou has541

demonstrated commendable progress by achieving a level of coordination indicative542

of favorably balanced development. In contrast, Wuxi has progressed to a state of543

barely balanced development.544
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Seven other cities (Nanjing, Xuzhou, Nantong, Zhenjiang, Hangzhou, Ningbo,545

and Hefei) have also made significant progress towards achieving coordination.546

However, it must be acknowledged that these cities still face challenges stemming547

from unbalanced development. It is therefore crucially important to continue making548

concerted efforts to enhance those cities’ coordination levels, particularly when549

mitigating CO2 emissions and PM2.5 pollutants. If similar environmental mitigation550

strategies to those of Shanghai were implemented, these seven cities have the551

potential to greatly enhance the coupling effect of both emissions.552

The cities that achieved a state of coupling coordination are primarily located in553

the provinces of Jiangsu (four cities), Zhejiang (three cities), and Shanghai (one). In554

Anhui province, Hefei was the only city to achieve a state of coordination. The cities555

that were found to be in a state of marginal coordination, nearing imbalance, or in a556

state of imbalance shared a common geographical feature, they are located on the557

periphery of their respective provinces, in another word, in rural areas. To promote558

synergistic emission reduction in these cities, it is imperative to enhance policy559

support, advocate for targeted emission reduction strategies, and advance initiatives560

for balanced regional development.561
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Figure 4: Coupling coordination degree, 2010–2020562

Table 3: Coupling coordination degree in YRD cities, 2020563

City

Coupling

Coordination

Degree

City

Coupling

Coordination

Degree

City

Coupling

Coordination

Degree

Shanghai 0.963 Ningbo 0.621 Huaibei 0.399

Nanjing 0.657 Wenzhou 0.392 Tongling 0.431

Wuxi 0.714 Jiaxing 0.415 Anqing 0.457

Xuzhou 0.694 Huzhou 0.479 Huangshan 0.166

Changzhou 0.573 Shaoxing 0.495 Chuzhou 0.411
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Suzhou 0.824 Jinhua 0.458 Fuyang 0.493

Nantong 0.656 Quzhou 0.37 Suzhou 0.5

Lianyungang 0.364 Zhoushan 0.123 Lu'an 0.36

Huai'an 0.36 Taizhou 0.318 Bozhou 0.316

Yancheng 0.517 Lishui 0.186 Chizhou 0.396

Yangzhou 0.506 Hefei 0.696 Xuancheng 0.403

Zhenjiang 0.664 Wuhu 0.591

Taizhou 0.415 Bengbu 0.402

Sugqian 0.335 Huainan 0.568

Hangzhou 0.627 Ma'anshan 0.442



34

Figure 5: Coupling coordination degree, 2020564

4.3 Spatial influencing factors565

A total of 18 variables were included in the OLS regression model, covering566

socioeconomic factors, the built environment, level of urbanization, and traffic567

accessibility. To address concerns about potential multicollinearity, an evaluation was568

performed on factors that displayed a correlation coefficient exceeding 0.7. After the569

assessment, a refined set of five variables was identified and ultimately chosen for570

inclusion in the model, with the 2020 Coupling Coordination Degree serving as the571

dependent variable. The OLS result (Table 4) revealed that the independent variables572

Traffic_Land (Transportation and Land) and Industry_Structure (Industrial Structure)573

both exhibited a significant positive correlation with the dependent variable. In574
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contrast, Tech_Lv (Technical Level) demonstrated a statistically significant negative575

correlation with the dependent variable. These findings suggest that neither Area nor576

GreenWater_Area (Green and Water Area) proved to be statistically significant577

predictors within this regression model. Overall, the model demonstrated a reasonable578

level of explanatory power, with an R² value of 0.499, while the adjusted R² value,579

accounting for the number of independent variables in the model, was 0.425.580

Table 4: OLS regression result of coupling degree and independent variables581

Estimate Std. Error t-value Pr(>|t|)

(Intercept) 0.368 0.0532 6.92 <0.0001 ***

Area >-0.0001 <0.0001 -0.761 0.4517

GreenWater_Area <0.0001 <0.0001 1.443 0.1583

Traffic_Land <0.0001 <0.0001 2.489 0.0179 *

Tech_Lv -0.862 0.419 -2.056 0.0475 *

Industry_Structure 0.111 0.0546 2.036 0.0496 *

R² 0.499

Adjusted R² 0.425

One of the objectives of this study was to examine the spatial relationship582

between coupling degree and independent variables across different regions, which is583

why a geographically weighted regression (GWR) model was adopted. The analysis584

found spatial heterogeneity in certain variables (Figure 6), specifically transportation585

and land (Figure 6(a)), as well as area (Figure 6(e)). For transportation and land, the586
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results indicated a distinct spatial pattern in the YRD region, with positive587

correlations observed in the southeastern areas, such as Ningbo, Shaoxing, Wenzhou,588

and Taizhou, and negative correlations evident in the northern areas. Moreover, the589

analysis highlighted a positive correlation between area and coupling degree in two590

southwestern cities, Lishui and Quzhou. This finding indicates that increases in area591

correspond with increases in coupling degree in these localities.592

Furthermore, both green areas and water areas (Figure 6(b)) and industrial593

structures (Figure 6(c)) exhibited positive correlations. However, significant spatial594

heterogeneity was observed across the YRD. The analysis revealed disparities595

between the northern and southern regions in terms of green and water areas, whereas596

industrial structure exhibited differences between the western and eastern areas. The597

only variable that displayed a negative correlation across the entire YRD region was598

the technical level (Figure 6(d)).599
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Figure 6: (a) Transportation and land; (b) Green and water area; (c) Industrial600

structure; (d) Technological level; (e) Area601

5. Discussion602

Spatial planning is crucial for achieving China’s dual carbon goals and holds603

significant potential for improving air quality. Research has provided evidence that604

implementing land use planning strategies can facilitate the achievement of dual605

carbon objectives (Yang, Xie, et al., 2024). National regulations on spatial planning606

mandates rational spatial layout and land use control in land development. Such607

development must be guided by diverse regional, typological, and hierarchical608

functional orientations and developmental objectives (Chen et al., 2020). In addition,609

the needs of both socioeconomic advancement and ecological conservation must be610

met. On the one hand, such measures as optimizing urban-rural structures, regulating611

land use, and safeguarding ecosystems can effectively reduce the intensity and overall612

emission of greenhouse gases and atmospheric pollutants. On the other hand, national613

spatial planning can also drive innovative development in areas such as green614

transportation and clean energy. These goals can be accomplished through various615

strategies, such as optimizing transportation route planning, increasing clean energy616
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infrastructure, and enhancing public transportation coverage, that align with the617

national goals of pollution reduction and emission mitigation (Chen et al., 2020).618

Based on the above findings, this study offers several planning proposals to619

address environmental concerns. Considering the complex interplay between CO2 and620

PM2.5, a thoughtful and nuanced approach is essential. Therefore, it is essential to621

carefully select an indicator system at the regional level that considers per capita622

emissions, per area emissions, and total emissions. This multifaceted approach623

enables the accurate assessment and monitoring of CO2 and PM2.5 emissions, laying a624

strong foundation for the development of effective mitigation strategies. Regarding625

urban planning strategies, it is essential to move beyond mere expansion and626

development and prioritize the control of city size and growth rates. Moreover, some627

studies have suggested that individual cities require their own, uniquely targeted628

urban expansion and environmental protection strategies to achieve the goal of629

controlling both CO2 and PM2.5 (Cai et al., 2018; Liu et al., 2023; Xia et al., 2022).630

Based on the findings of the GWR analysis, a zoning strategy can be631

instrumental in effectively reducing emissions and improving air quality. By dividing632

regions at the provincial level based on spatial autocorrelation results, targeted633

emission reduction strategies can be developed to address each area’s unique634

challenges and opportunities. On the one hand, regions with a high coupling635

coordination degree in CO2 and PM2.5 emissions tended to adopt more effective and636

efficient governance strategies that worked in synergy. Implementing such measures637
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effectively reduced pollutant emissions, especially in regions with high coupling638

coordination. On the other hand, regions with a low coupling coordination degree may639

have faced challenges from alternative sources of pollution and emission factors.640

Tailored governance strategies must therefore be developed to address these641

challenges. It is important to understand that in regions with a low coupling642

coordination degree, synergistic governance strategies should not be enforced643

indiscriminately.644

In addition, when pollution control measures are being devised, it is crucial to645

consider the correlation between CO2 and PM2.5 emissions. Each region’s coupling646

coordination degree had its own nuanced characteristics, which highlights the need for647

tailored governance approaches based on specific contextual attributes. A tailored648

approach to governance would ensure specifically targeted interventions that promote649

synergy and collaboration between, on the one hand, efforts to reduce diverse types of650

emissions and pollution and, on the other hand, sustainable urban development. The651

findings of this study indicate that if these concerns are prioritized in urbanization652

plans, natural resources can be safeguarded and the risks posed by emissions and653

pollution mitigated. Ultimately, the result will be healthier and more livable urban654

environments.655

Furthermore, a previous study found that high-density, compact urban land-use656

patterns reduce CO2 emissions because this approach enhances energy consumption657

efficiency by developing public transportation and compact urban structures (Xia et658
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al., 2022). This study found that the industrial sector emerged as a predominant659

contributor to CO2 and PM2.5 emissions within the city, and policy interventions660

targeting this sector could yield substantial environmental benefits. Industrial land use661

has significantly impacted CO2 and PM2.5, suggesting that urban planning strategies662

should prioritize the mitigation of emissions from industrial activities (Ben-Ahmed &663

Ben-Salha, 2024; L. Li et al., 2022; S. Wang & Li, 2023; Zhang et al., 2021).664

Optimizing industrial structure allocation and promoting the adoption of clean energy665

and low-carbon technologies are critical steps toward achieving sustainable666

development goals (Ben-Ahmed & Ben-Salha, 2024; Li et al., 2022; Wang & Li,667

2023; Zhang et al., 2021). Consequently, urban planners should explore such668

measures as promoting cleaner production technologies, implementing emission669

control regulations, and fostering the adoption of renewable energy sources in670

industrial zones to effectively curb emissions and improve air quality in urban areas.671

This study encountered significant challenges to the collection of accurate and672

comprehensive data on carbon emissions and greenhouse gases. Despite the673

researcher’s diligent effort, many obstacles stood in the way of accessing official data674

that precisely captured the intricate dynamics of emissions at the regional level. This675

hampered the comprehensiveness of this study’s analysis and limited the insights that676

could be gained from the complex interplay of factors that drive emissions in specific677

administrative regions. It is imperative that future investigation should consider high-678

resolution data on CO2 and PM2.5 at the county level. To overcome all these679
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limitations, this study used a time-space multi-sector model. This approach enabled680

the quantitative identification and analysis of the underlying reasons for synergistic681

emissions.682

Given the inherent uncertainties and challenges in acquiring reliable data for683

specific emission categories—especially carbon emissions from transportation—this684

study have excluded these from the analysis. This exclusion is essential for aligning685

with the IPCC framework, which provides a consistent methodology for carbon686

accounting, and ensures transparency regarding the study's scope and limitations.687

Also, there is a significant source of uncertainty arises from the MEIC data,688

particularly in sectors such as coating, printing, and dyeing, where the extensive use689

of solvents introduces higher variability in emission factors and activity data (N. Wu690

et al., 2024). These uncertainties may lead to potential overestimations of emissions,691

which is why these sectors were not included in the current study. The imprecision in692

emission factors is largely due to the lack of precise data on solvent consumption and693

the varying efficiency of emission control technologies across regions. In addition, we694

acknowledge the uncertainties introduced during the data processing phase,695

specifically when converting MEIC raster data into county-level estimates. This696

transformation process, which involves data aggregation and interpolation, introduces697

spatial uncertainties that can lead to either over- or underestimations of emissions in698

specific regions.699

6. Conclusion700
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The findings of this study suggest that the coupling coordination degree was a701

good indication of the success of pollution governance methods. This research702

highlighted the importance of the synchronized management of CO2 and PM2.5703

emissions in regions with high coordination degrees by demonstrating its role in the704

reduction of environmental pollution. This study therefore underscores the importance705

of proactive and integrated policies that align with economic and urban development706

at the regional level, given that they can have a substantial impact on environmental707

quality overall.708

The study aimed to examine the relationship between coupling degree and709

independent variables using a GWR model, with a focus on spatial analysis. The710

findings revealed spatial heterogeneity in certain variables, particularly transportation711

and land, as well as area. Positive correlations were found in the southeastern areas712

(including Ningbo, Shaoxing, Wenzhou, and Taizhou) of the YRD region, while713

negative correlations were observed in the northern areas for transportation and land.714

In addition, this study emphasizes the importance of caution in regions with low715

degrees of coupling coordination and highlights the complexity of pollution dynamics.716

It is crucial to tailor governance strategies to these regions and to consider the diverse717

influences from alternative pollution sources and emission factors. In other words,718

flexibility and adaptability in environmental policies are a necessity. There should be719

a move away from a one-size-fits-all approach toward nuanced, region-specific720

interventions.721
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This study was limited by the difficulty experienced in obtaining high-resolution722

data for CO2 and PM2.5, which necessitated a focus on the regional scale. The723

challenges related to the accuracy and quantification of CO2 and PM2.5 data impeded724

the examination of their coupling effects at the city or community scales. These725

obstacles underscore the urgent need for future research to improve data quality,726

strengthen synergistic management, and explore multidimensional integrated727

approaches. As we look toward the future, there is a growing need for more detailed728

investigations at the micro level, which presents a promising avenue for future729

research endeavors. Such thorough analyses at the local level can uncover the730

nuanced factors that influence emissions, providing a solid foundation for specific,731

focused spatial planning recommendations. Investigations at the micro level can732

enhance our academic understanding of environmental dynamics and offer733

environmental dynamics and offers practical insights for policymakers and urban734

planners working towards synergistic emission reduction goals.735

The choice of the YRD region as the study area provided an outstanding model,736

yielding important insights for other regions in China and for the global community.737

This is particularly the case for developing countries, such as Indonesia, India, and738

Africa, that are dealing with comparable issues.739
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