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A B S T R A C T   

With COVID-19 prevalent worldwide, current studies have focused on the factors influencing the epidemic. In 
particular, the built environment deserves immediate attention to produce place-specific strategies to prevent the 
further spread of coronavirus. This research assessed the impact of the built environment on the incidence rate in 
King County, US and explored methods of researching infectious diseases in urban areas. Using principal 
component analysis and the Pearson correlation coefficient to process the data, we built multiple linear 
regression and geographically weighted regression models at the ZIP code scale. Results indicated that although 
socioeconomic indicators were the primary factors influencing COVID-19, the built environment affected COVID- 
19 cases from different aspects. Built environment density was positively associated with incidence rates. Spe
cifically, increased open space was conducive to reducing incidence rates. Within each community, overcrowded 
households led to an increase in incidence rates. This study confirmed previous research into the importance of 
socioeconomic variables and extended the discussion on spatial and temporal variation in the impacts of urban 
density on the spread of COVID, effectively guiding sustainable urban development.   

1. Introduction 

COVID-19 (coronavirus disease 2019) is caused by SARS-CoV-2 and 
has rapidly spread across the world following its initial outbreak in 
December 2019, in Wuhan, China (Cascella, Rajnik, Cuomo, Dulebohn 
& Di Napoli, 2020). One year later, 62,662,181 confirmed cases of 
COVID-19 and 1460,223 deaths, had been reported globally (WHO, 
2020). Predominantly spread from person-to-person (Cascella et al., 
2020), COVID-19 has intensified problems in the urban environment, 
which might have previously been ignored by city planners (Hamidi, 
Sabouri & Ewing, 2020b). Reviewing the development of urban plan
ning, there is a clear link between new planning theories and public 
health issues, particularly when major epidemics occur (Corburn, 2004). 
However, the impact of the built environment on emerging contagious 
diseases has rarely been studied (Alirol, Getaz, Stoll, Chappuis & Loutan, 
2011; Carozzi & Felipe, 2020; Hamidi et al., 2020b). As COVID-19 
continues to attract worldwide attention, determining the impact of 
the built environment on COVID-19 cases has become a research priority 
(Megahed & Ghoneim, 2020). 

Researchers have examined the spatial-temporal variations of 
COVID-19 in different contexts (Gao, Rao, Kang, Liang & Kruse, 2020; 
Huang, Liu & Ding, 2020; Peng, Wang, Liu & Wu, 2020). The main focus 
of these studies has been on socioeconomic and meteorological in
dicators. However, there is a lack of detailed research into the influence 
of the built environment, which is vital for informing prevention and 
control efforts in urban areas (Peng et al., 2020). Several studies have 
identified socioeconomic indicators as key factors shaping patterns of 
COVID-19 cases and deaths (Almagro & Orane-Hutchinson, 2020; Coc
cia, 2020; Sannigrahi, Pilla, Basu, Basu & Molter, 2020; You, Wu & Guo, 
2020). In Europe, income was found to strongly regulate COVID-19 
cases (Sannigrahi et al., 2020). Occupation was also crucial in explain
ing infection risk. Research in Italy and the United States, showed that 
workers with a high degree of human interaction were more likely to be 
exposed to the virus (Almagro & Orane-Hutchinson, 2020; Barbieri, 
Basso & Scicchitano, 2020). Moreover, migration factors have been 
strongly correlated with COVID-19 deaths, and countries with high 
volumes of airline passenger traffic were associated with increased 
numbers of COVID-19 cases (Oztig & Askin, 2020). Additionally, the 
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racial difference is obvious in the earlier stage of transmission, and 
household overcrowding may accelerate the rate of spread within 
neighborhoods (Almagro & Orane-Hutchinson, 2020; Chen & Krieger, 
2021). Additional studies have foregrounded meteorological factors 
(Ahmadi, Sharifi, Dorosti, Jafarzadeh Ghoushchi & Ghanbari, 2020; 
Bashir et al., 2020a; Shahzad et al., 2020; Xie & Zhu, 2020). Tempera
ture was significantly correlated with COVID-19 in areas with higher 
incidence rates in China (Shahzad et al., 2020; Xie & Zhu, 2020). In 
addition, air quality was strongly associated with infection cases (Bashir 
et al., 2020b; Coccia, 2020). Moreover, low wind speeds may exacerbate 
the impact of air quality on disease transmission (Coccia, 2020), since 
cases in areas with low wind speeds were noteworthy (Ahmadi et al., 
2020). Although researchers have observed the importance of urban 
density in spreading virus (Almagro & Orane-Hutchinson, 2020; Carozzi 
& Felipe, 2020; Hamidi et al., 2020b), few studies have examined the 
association between the built environment and COVID-19 cases. 

Observing a lack of COVID-19 studies related to the built environ
ment, it is vital to examine the driving factors in urban settings through 
effective methods. Recent studies referring to the built environment are 
summarized in Table 1, to better position the present study. These ar
ticles include regions in North America, East Asia, and Europe, and 
reflect geographical diversity and a commonality of attributes. In North 
America, researchers have largely chosen the US as a study area, 
considering the significant number of infections and the accessibility of 
data (Carozzi & Felipe, 2020). At present, the research scale is largely 

nationwide, exploring issues from macro perspectives. Several studies 
focus on areas such as metropolitan counties and major cities (Hamidi, 
Ewing & Sabouri, 2020a). However, research at the meso and micro 
scales remains scarce, requiring greater focus on urban areas at the 
county level. In the built environment, population density, activity 
density (population and employment per square mile), ICU beds, room 
occupancy, and urgent care facilities are selected as influential factors in 
the research. The findings show that density-related factors have a 
critical role in producing higher incidence rates (Andersen, Harden, 
Sugg, Runkle & Lundquist, 2021). However, there is a lack attention to 
factors related to spatial density, such as building concentration, road 
networks, point of interest (POI) distribution, and land use intensity, 
which are essential for guiding sustainable development in cities. In East 
Asia, the study area largely comprises China and its surrounding regions, 
and researchers typically use cities as examples (Li, Peng, He, Wang & 
Feng, 2021; Yip, Huang & Liang, 2021). In addition to population 
density, built-environment attributes include POIs, housing size, build
ing density, and distance. The main findings indicate that POIs such as 
public transportation, clinics and commercial services, are more likely to 
influence COVID-19 infections (Li, Ma & Zhang, 2021). In Europe, few 
studies are committed to analyzing attributes in the built environment. 
Most research discusses socioeconomic determinants and connections 
between cities (Ghosh, Nundy, Ghosh & Mallick, 2020). In general, these 
studies provide evidence that the built environment affects COVID-19 
infections in different regions. However, analysis of built-environment 

Table 1 
Recent articles referring to the impacts of the built environment on COVID-19.  

Source Built environment attributes Analysis method Study area Major findings 

Carozzi & 
Felipe, 2020 

Population density, earthquake risk, aquifer 
presence, soil drainage quality 

Empirical analysis, 
ordinary least squares 
(OLS), Instrumental 
Variable (IV) 

The contiguous United 
States 

Density influenced the timing of the outbreak in 
each county. Denser areas were more likely to 
have an early outbreak. 

Hamidi et al., 
2020a 

Metropolitan population, activity density 
(population plus employment per square mile), 
ICU beds per 10,000 population 

Multi-level linear model 1165 metropolitan 
counties in the USA 

Large metropolitan size led to significantly higher 
COVID-19 incidence rates and higher mortality 
rates. 

Ghosh et al., 
2020 

Population density, distance from London Pearson, Kendall, and 
Spearman rank correlation 
tests 

London, UK The distance from the UK epicenter (London) 
increased, the number of COVID-19 cases 
decreased. Necessary measures to control 
transmission in cities were discussed. 

Andersen et al., 
2021 

Occupants per room, population density, Urgent 
Care Facilities 

Cluster analysis, three- 
stage regression 

The US Several of the highly-likely case clusters were 
associated with outbreaks in high-density locales, 
such as correctional facilities and meat-packing 
plants. 

Li, Ma & Zhang, 
2021 

Between centrality, POI density around railway 
stations, population density 

Mixed geographically 
weighted regression model 
(MGWR) 

At city level in China POI density around railway stations, travel time 
by public transport to activity centers, and the 
number of flights from Hubei Province were 
associated with the spread. 

Hu, Roberts, 
Azevedo & 
Milner, 2021 

Housing (average household size, residence 
length, car-less households) 

Multi-variable regression 
models 

Washington, DC Housing quality, living conditions, race and 
occupation were strongly correlated with the 
COVID-19 death count. Combined built and 
social environment variables were the most 
significant predictors of COVID-19 death counts. 
Among these variables, crowding ratio had the 
most significant influence, followed by work 
commute time and Black American ratio. 

Kim, 2021 Ratio of semi-basement households, impervious 
area ratio, number of disaster risk facilities with a 
grade of D or lower, population density 

Exploratory spatial data 
analysis and spatial 
regression 

225 spatial units in 
South Korea 

New infectious diseases differed from other 
infectious diseases related to the ecological 
environment. 

Li, Peng, He, 
Wang & 
Feng, 2021 

Commercial prosperity, medical services, 
transportation infrastructure, POIs, building 
density, housing price 

Density-based clustering 
algorithm, structural 
equation modeling (SEM) 

Urban district of 
Huangzhou in the city 
of Huanggang, China 

Commercial vitality and transportation 
infrastructure directly and indirectly influenced 
the number of confirmed cases in an infectious 
cluster, indicating that10should implement 
sufficient measures and adopt effective 
interventions in areas with a high probability of 
crowded residents. 

Yip et al., 2021 Household size, public housing area, number of 
clinics (restaurants, public markets and massive 
transit rail entrances), median value of the 
shortest distance between clinics (restaurants, 
public markets and MTR entrances) and 
residential buildings 

Survival analysis, ordinary 
least squares analysis, and 
count data analysis 

Hong Kong, China Before social distancing measures: clinics and 
restaurants were more likely to influence the 
prevalence of COVID-19. 
During social distancing measures: public 
transportation (i.e., MTR), public markets, and 
clinics influenced COVID-19 prevalence.  

C. Liu et al.                                                                                                                                                                                                                                      



Sustainable Cities and Society 74 (2021) 103144

3

attributes is limited, and research into spatial density from meso and 
micro perspectives is lacking. To address the research gap, we further 
explored the influence of the built environment on COVID-19 by 
focusing on density-related factors, including population density, POI 
distribution, building concentration, housing and land use intensity. 

Similar research has employed several methods to assess the factors 
influencing infectious diseases. These approaches fall into two 

categories. The firsts comprises traditional statistical approaches, 
including principal component analysis or factor analysis (Santosi, Fis
bergi, Marchionii, Baltarii & Castroi, 2019) and single or multiple 
regression (Almagro & Orane-Hutchinson, 2020; Hamidi et al., 2020a; 
Shahzad et al., 2020; Xie & Zhu, 2020). The second category consists of 
spatial statistical methods, including spatial regression models (SRMs), 
such as the spatial lag model (SLM) (Sannigrahi et al., 2020), spatial 

Fig. 1. Research flowchart.  
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error model (SEM) (Sannigrahi et al., 2020), and geographically 
weighted regression (GWR) (Liu et al., 2020; Sannigrahi et al., 2020). In 
urban and environmental research, multivariate statistical methods 
effectively classify samples and identify key sources by drawing mean
ingful information from large datasets (Gu et al., 2012; Meng et al., 
2018). A typical application of multivariate statistical methods in 
environmental issues is land use regression (LUR). The LUR model, 
which was first created to map variations in intra-urban air pollution in 
the SAVIAH project (Briggs et al., 1997), has been widely used in 
epidemiological studies for the past decade (Briggs, 2005). In different 
settings, including Europe (Eeftens et al., 2012; Rivera et al., 2012), 
North America (Ross, Jerrett, Ito, Tempalski & Thurston, 2007; Su et al., 
2008), Japan and China (Liu, Henderson, Wang, Yang & Peng, 2016; 
Wu et al., 2015), LUR has proved to be a robust technique for predicting 
concentrations of air pollutants (Jerrett et al., 2005) and could be 
extended to the study of airborne epidemics. Since traditional statistical 
methods neglect spatial autocorrelation among variables (Liu et al., 
2020; Wu, Chen, Han, Ke & Liu, 2020), spatial statistical methods were 
introduced in this study to visualize the results of the multiple linear 
regression (MLR) models. 

To address the gap in urban infectious disease research, the main 
purpose of this study is to identify the determinants of COVID-19 cases 
in King County, Washington. Since there is little research investigating 
the impact of built-environment factors on COVID-19, this paper pro
vides preliminary conclusions regarding the association between the 
built environment and the transmission of infection. It also explores 
methods of researching infectious diseases in urban areas, and the 
methods employed in King County could be applied to other areas 
around the world. This is conducive to formulating effective response 
policies and the coherent distribution of urban resources (Coccia, 2020; 
Gössling, Scott & Hall, 2020; Honey-Rosés et al., 2020; Mehta, 2020). 

This paper is organized as follows. Section 2 introduces the meth
odology used to build the models, including study area, data prepara
tion, model setting and statistical analysis. Section 3 describes the 
results of each model. Sections 4 and 5 present the discussions and 
conclusions. 

2. Methodology 

Fig. 1 shows the study flow: choosing King County, Washington as 
the study area, we collected data at the ZIP code level from municipal 
government datasets. The dependent variable was the incidence rate per 
1000 at the ZIP code scale. Socioeconomic, built environment, and 
meteorological data were selected as independent variables. Using 
principal component analysis (PCA) and the Pearson correlation coef
ficient (PCC) to process the independent variables, we built two models: 
a principal component analysis multiple linear regression (PCA-MLR) 
model and a Pearson correlation coefficient multiple linear regression 
(PCC-MLR). By comparing the results of the PCA-MLR and the PCC-MLR, 
we observed that the PCC-MLR obtained a high degree of explanation. 
Based on the results of the PCC-MLR, we built dynamic PCC-MLR and 
geographically weighted regression (GWR) models to visually describe 
temporal and spatial distributions in the results. Moreover, typical 
neighborhoods were selected for case comparison. Finally, we got the 
conclusion of the impacts of the built environment on the incidence rate 
of COVID-19 by combining all the results. Data cleaning and modeling 
were completed using statistical packages (SPSS, Tableau). We 
employed geographic information system (GIS) to analyze and visualize 
the results. 

2.1. Study area 

King County was selected as the study area for two reasons: firstly, 
King County is the most populous county in the state of Washington and 
a major metropolitan area representative of the US in general. Secondly, 
the coherence and uniformity of King County`s COVID-19 policy has 

stabilized the prevention and control of the epidemic, which is advan
tageous for analyzing spatial variation in a specific period. As shown in 
Fig. 2, King County is located in the US state of Washington. It is the 
largest county in Washington by population and the 12th most populous 
in the United States. In the 2018 census, the total population was 
1,931,249. King County is also included in the Seattle-Tacoma-Bellevue 
metropolitan statistical area (including Snohomish County to the north 
and Pierce County to the south). The total land area of the study is 5480 
km2. Average population density is 352 per km2. Median household and 
family incomes are $68,065 and $87,010 respectively. The study area 
includes 85 zip codes, covering 35 cities and four towns, including the 
largest city in the state of Washington—Seattle. 

2.2. Model setting 

2.2.1. Dependent variable 
The dependent variable is the incidence rate per 1000. Incidence rate 

(or infection rate) is used to describe the probability or risk of an 
infection occurring in a defined population within a specific period 
(Haley, Culver, White, Morgan & Emori, 1985). We collected a cumu
lative number of infections at the ZIP code level from February 28, 2020 
to October 5, 2020, from King County department of public health. To 
calculate the rate of infection, we divided the number of infection cases 
by the population at risk. Using 2018 population data from the American 
Community Survey (ACS, 2018), we calculated the incidence rate for 
each ZIP code per 1000. The normal distribution test was conducted by 
QQ plot in SPSS. Extreme cases were removed to filter outliers. Finally, 
74 samples were selected to construct the model. 

2.2.2. Independent variables 
The independent variables used to build the PCA-MLR and PCC-MLR 

models may be categorized into three groups: socioeconomic indices, 
built environment indices, and meteorological indices. Socioeconomic 
indices included sex, age, race, commuting, income, room occupancy, 
and house structure. These were collected from the American Commu
nity Survey (ACS, 2018) and represent categories 1–7 in Table 2. By 
dividing the indices by the total population and the household number, 
we obtained the percentage for each index. Built-environment indices 
included land use (residential, industrial, open space, park, recreation 
ground, retail, and forest), population density, road networks, building 
concentration, and common POI data (catering, entertainment, hotel, 
medical, office, and culture). Built environment indices were obtained at 
the ZIP code level and represent categories 8–9 in Table 2. Meteoro
logical indices included particulate matter (PM2.5), ambient tempera
ture, room temperature, and wind speed, all of which were obtained 
from station reports in the Department of Ecology, State of Washington 
and represent category 10 in Table 2. The indices were subsequently 
georeferenced using GIS software to perform inverse distance weighted 
(IDW) analyses for the average values in each ZIP code. The variables are 
shown in Table 2. 

2.2.3. Data processing 
This study used PCA and the PCC to separate key variables and solve 

multicollinearity. PCA reduces sample dimensions of by converting the 
original variables into a comprehensive group of independent variables. 
This procedure is useful for extracting key information from multiple 
variables (Meng et al., 2018). Furthermore, the PCC is an effective 
method of measuring the degree of linear correlation between variables 
(Ahmadi et al., 2020). 

For the PCA-MLR model, we applied PCA to three separate groups. 
For socioeconomic indices in categories 1–7, we obtained eight new 
components using PCA, abbreviated as factors 1–8 for analysis 1. For 
built environment indices from categories 8–9, we derived four new 
components, abbreviated as factors 1–4 for analysis 2. For meteorolog
ical indices in category 10, we acquired two new components, abbre
viated as factors 1–2 for analysis 3. For clarity, each factor was renamed 
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in parentheses according to its components. Finally, the initial 92 vari
ables were reduced to 14 components, as shown in Table 3. Detailed 
information about the components is shown in Tables S1~S3. 

For the PCC-MLR model, we analyzed variable correlation to prevent 
multicollinearity. If the PCC value was greater than 0.7, the variables 
were considered to be strongly correlated and only one of the compared 
variables was retained. Scatter plots were created for each variable, and 
the most representative variables in each category were selected to build 
the model. After filtering, 46 variables were chosen for the final model. 
The selected variables are shown in Table 3. 

2.3. Statistical analysis 

To determine the independent variables that significantly impact the 
dependent variables, we employed forward stepwise multiple regres
sion. To obtain the optimal model, in which all variables are significant 

for the dependent variables, the variables were added individually. Each 
time a new variable was introduced, an F-test was conducted, and t-tests 
were carried out for each of the previously added variables. Variables 
that were no longer significant after introducing a subsequent variable 
were eliminated. This process was repeated until no significant variables 
remained for model selection and all the insignificant independent 
variables had been removed from the regression equation (Crowley, 
Khoury, Urbina, Ippisch & Kimball, 2011; Yi, Zhang, Xu & Xi, 2003). The 
adjusted R-squared and residuals were analyzed to evaluate the suit
ability of fit, and the function of incidence rate and land use factors was 
determined. In addition, a simple spatial regression model was used to 
initially visualize the spatial distribution of the variables. In this study, 
the GWR model was selected to construct the spatial model. All data and 
spatial analyses were completed using ArcGIS, GWR4.0 and SPSS 
packages. 

Fig. 2. Study area of King County, WA.  

Table 2 
A list of the variables used in the study.  

Category Name Source Description Variables 

1 Sex ACS 2018 (American 
community survey in 
2018) 

Records of sex divided by 
population at ZIP code level 

male_rate, female_rate, married_rate, male_household_rate, female_household_rate, 
nonfamily_alone_rate, nonfamily_notalone_rate 

2 Age  Records of age divided by 
population at ZIP code level 

0–17_rate, 18–65_rate, over65_rate, male_0–17_rate, female_0–17_rate, 
male_18–65_rate, female_18–65_rate, male_over65_rate, female_over65_rate 

3 Race  Records of race divided by 
population at ZIP code level 

white_rate, Black_Afican_rate, American_indian_Alaska_rate, Asian_rate, 
Hawaiian_Pacific_rate, other_rate, two_more_rate 

4 Commuting  Records of commuting divided 
by the number of commuters at 
ZIP code level 

drive_alone_rate, carpooled_rate, public_transportation_rate, 
walked_bicycle_motorcycle_home_rate 

5 Income  Records of income divided by 
households at ZIP code level 

less_than_15,000_rate, 15,000–35,000_rate, 35,000–100,000_rate, 
100,000–200,000_rate, more_than_200,000_rate 

6 Bedroom  Records of bedrooms divided by 
house units at ZIP code level 

no_bedroom_rate, 1_bedroom_rate, 2_bedrooms_rate, 3_bedrooms_rate, 
4_bedrooms_rate, 5_or_more_bedrooms_rate, 1_room_rate, 2_rooms_rate, 
3_more_rooms_rate, less_than_1_occupant_rate, 1–2_occupants_rate, 
2_more_occupants_rate, complete_plumbing_rate, not_complete_plumbing_rate 

7 House 
Structure  

Records of structure divided by 
house units at ZIP code level 

attached_rate, detached_rate, 2_units_rate, 3_or_4_units_rate, 5_to_9_units_rate, 
10_to_19_units_rate, 20_to_49_units_rate, 50_more_units_rate, mobile_rate, 
2000later_rate, 1980–1999_rate, 1960–1979_rate, 1959_earlier_rate 

8 Land Use OSM (Open Street Map) Ratio of land use area at ZIP code 
level 

farm_rate, forest_rate, grass_rate, heath_rate, industrial_rate, meadow_rate, 
military_rate, nature_reserve_rate, orchard_rate, park_rate, quarry_rate, 
recreation_ground_rate, residential_rate, retail_rate, scrub_rate, building_density, 
road_density, population_density 

9 POI  Ratio of POIs at ZIP code level catering_rate, entertainment_rate, hotel_rate, medical_rate, education_rate, 
office_rate, culture_rate, open_space_rate, selling_rate, transportation_rate 

10 Meteorology Department of Ecology, 
State of Washington 

Annual averages at ZIP code 
level 

PM2.5, wind speed, ambient temperature, room temperature  
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Sustainable Cities and Society 74 (2021) 103144

6

3. Results 

3.1. COVID-19 temporal-spatial distribution 

According to King County`s COVID-19 data dashboard, 23,149 pos
itive cases had been recorded by October 5, 2020, and the average 

incidence rate was 1.04%. Fig. 3 shows the daily number of positive 
counts of COVID-19 in King County. The maximum number of daily 
infections exceeded 200 per day during April and June. The average 
number of daily positive counts was 126 per day. Between February 28, 
2020 and October 5, 2020, the number of infections increased steadily. 
A heat map of incidence rates (Fig. 4) indicates that the highest inci
dence rates occurred in the western area of King County, notably the 
southwest region where the city of Seattle is located. Incidence rates 
were generally lower in suburban areas, indicating that high density 
urban environments may have an impact on incidence rates. 

3.2. PCA-MLR model results 

As shown in Table 4, five factors were included in the final model, 
and the adjusted R-squared was 0.816. Of all the indicators selected, 
factor 2 of analysis 1 was the primary influencing marker. Comparing 
the PCA factors with the original indicators, we found that factor 2 of 
analysis 1 largely explained income composition, as shown in Tables S1 
and S2 (see appendix). The second indicator in the model was factor 5 of 
analysis 1, which typically represented race. Factor 1 of analysis 2 was 
the third marker and largely included POI information density. Factor 6 
of analysis 1 was the fourth indicator and was significantly associated 
with building age. Finally, factor 1 of analysis 1 largely represented 
socioeconomic indices. 

3.3. PCC-MLR model results 

Seven influencing factors were finally entered into the LUR in the 
PCC-MLR model. These included income, race, room occupancy, POIs, 
meteorology and land use (Table 5). The adjusted R-squared was 0.779. 
The two most influential factors explained 76% of the variation and 
were related to race, notably Black and African American and American 
Indian and Alaska Native. These two variables showed relatively strong 
correlations with incidence rates. The third indicator in the model was 
two or more occupants per room, which explained 9% of the variation 
and was positively correlated with incidence rates. Recreational land use 
(open green space for general recreation, which may include pitches, 
nets and so on, usually municipal but possibly also private to colleges or 
companies) was the fourth influential factor and demonstrated a sig
nificant negative correlation with incidence rates. As the ratio of rec
reation ground increased, the incidence rate declined. This suggests that 
open green spaces help slow the spread of the virus. The fifth indicator 
was office POI, followed by incomes between $100,000 and $200,000 
and PM2.5. The incidence rate declined among groups with incomes 
between $100,000 and $200,000. This implies that high-income 
households are better able to avoid contact with disease sources. And 
the indicators of office POI and PM2.5 showed positive correlations with 
incidence rates. 

3.4. Dynamic PCC-MLR model 

Based on the PCC-MLR model, we added time as a factor (abbrevi
ated to t). Using one month as the basic unit, we defined t as a time series 
of COVID-19 (t = 1, when the first case of COVID-19 occurred, t = t + 1, 
after the first case of infection occurred). The remaining independent 
variables were unchanged, and an incidence rate of 1000 people per 
month was used as the dependent variable to build a dynamic model. 
Following data screening, a total of 596 samples were selected for the 
model construction. 

Ten influencing factors were entered into the dynamic PCC-MLR 
model, including income, time, family characteristics, race, room oc
cupancy, land use and building structure (Table 6). The adjusted R- 
squared was 0.434. The first and third influencing factors were income- 
related, representing groups with incomes above $100,000, and 
explained 63% of the variation. Both variables showed negative corre
lations with incidence rates. Time was the second indicator, which 

Table 3 
Selected variables.  

Category Name PCA-MLR 
components 

PCC-MLR selected variables 

1 Sex factor 1 of 
analysis 1 
(Integration), 
factor 2 of 
analysis 1 
(Income), factor 
3 of analysis 1 
(House structure 
attached), factor 
4 of analysis 1 
(Building age), 
factor 5 of 
analysis 1 
(Minority), factor 
6 of analysis 1 
(House 
structure), factor 
7 of analysis 1 
(Age over 65), 
factor 8 of 
analysis 1 
(Mobile house) 

nonfamily_alone_rate, 
married_rate 

2 Age  over65_rate 
3 Race  Black_Afican_rate, 

American_indian_Alaska_rate, 
Asian_rate, 
Hawaiian_Pacific_rate, 
two_more_rate 

4 Commuting  carpooled_rate 
5 Income  less_than_15,000_rate, 

100,000—200,000_rate, 
more_than_200,000_rate 

6 Bedroom  2_bedrooms_rate, 
3_bedrooms_rate, 
5_or_more_bedrooms_rate, 
2_more_occupants_rate, 

7 House 
Structure  

attached_rate, 2_units_rate, 
3_or_4_units_rate, 
5_to_9_units_rate, 
10_to_19_units_rate, mobile_rate, 
2000later_rate, 1980–1999_rate 

8 Land Use factor 1 of 
analysis 2 (POI 
density), factor 2 
of analysis 2 
(Built-up 
density), factor 3 
of analysis 2 
(Residential land 
use), factor 4 of 
analysis 2 
(Industrial land 
use) 

industrial_rate, meadow_rate, 
park_rate, 
recreation_ground_rate, 
residential_rate, retail_rate, 
building_density, road_density, 
population_density 

9 POI  catering_rate, 
entertainment_rate, hotel_rate, 
medical_rate, education_rate, 
office_rate, culture_rate, 
open_space_rate, selling_rate, 
transportation_rate 

10 Meteorology factor 1 of 
analysis 3 
(Integration), 
factor 2 of 
analysis 3 (Room 
temperature) 

PM2.5, Wind speed, Ambient 
temperature, Room temperature  
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explained 15% of the variation and was positively correlated with 
incidence rates. Family characteristics, notably non-family living alone, 
was the fourth influential factor and showed a negative correlation with 
incidence rates. The fifth and sixth factors were race-related, including 
American Indian and Alaska Native and Black and African American, 
which were positively correlated with incidence rates. Recreational land 
use was the seventh influencing indicator and demonstrated a 

significant negative correlation with incidence rates. The indicators 
eight to nine were an occupancy of two more per room, followed by two 
bedrooms and five to nine units. 

The results of the PCC-MLR models with the time factor (Table 6) and 
without time factor (Table 5) were unanimous regarding the impacts of 
the built environment. As the proportion of recreational land use 
increased, incidence rates declined. Crowded households also showed a 
positive correlation with incidence rates. Moreover, higher income 
groups demonstrated lower incidence rates, whereas ethnic groups were 
more likely to contract the virus. We found that considering time would 
not improve the results, since policy and individuals’ activities invari
ably change over time. This presents challenges when analyzing the 
remaining factors, supporting our previous analysis of the built 
environment. 

The PCA-MLR and PCC-MLR models shared several indicators. 
Firstly, different ethnic groups, notably American Indian and Alaska 
Native and Black and African American demonstrated a strong positive 
correlation with incidence rates. Secondly, income was a significant 
influence in the two models. Thirdly, POI density and crowded housing 
increased incidence rates to different degrees. 

3.5. GWR results 

To determine the spatial distribution of the variables, we built GWR 
model (the first-order QUEEN was chosen to build a spatial weight 
matrix) based on the results of the PCC-MLR. The results of the GWR are 
given in Fig. 5. For the seven factors included in the PCC-MLR model, the 
R-squared of the GWR is 0.83, and the adjusted R-squared is 0.80. Ac
cording to the standardized residuals (Std.Resid), two units extended the 

Fig. 3. COVID-19 daily counts from 2020/2/28 to 2020/10/5.  

Fig. 4. COVID-19 cases and incidence rates.  

Table 4 
The PCA-MLR model results.  

MODEL Unstandardized 
coefficients 

Standardized 
coefficients 

t Sig. 

(constant) 9.962  38.199 <0.001 
factor 2 of 

analysis 1 
(Income) 

4.559 0.871 17.318 <0.001 

factor 5 of 
analysis 1 
(Minority) 

0.617 0.118 2.348 0.022 

factor 1 of 
analysis 2  (POI 
density) 

1.256 0.240 3.144 0.002 

factor 6 of 
analysis 1 
(House 
structure) 

0.753 0.144 2.710 0.009 

factor 1 of 
analysis 1 
(Integration) 

− 0.711 − 0.136 − 1.830 0.072 

Adjusted R2 0.816     
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range of a 2.5 standard deviation, both of which were located in the 
densely populated area of Seattle. The built environment and socio
economic conditions were different from those in the remaining study 
areas. Therefore, additional variables must be considered. The local R- 
squared showed a decreasing trend from south to north, as shown in 
Fig. 5. 

Fig. 6 presents the spatial distribution of the coefficients for the seven 
factors included in the PCC-MLR. Income between $100,000 and 
$200,000 and recreational land use were negatively correlated with 
incidence rates. Furthermore, the recreation ground indicator demon
strated greater spatial variation. The coefficient values for dense urban 
areas were larger than those in the suburbs, as was also evident for in
come between $100,000 and $200,000. This was contrary to the situa
tions for American Indian and Alaska Native and the hotel POI. 

3.6. Comparison of typical neighborhoods 

From micro scale, this study chose typical neighborhood cases of ZIP 
code 98,005 and 98,109 (shown in Fig. 7) to further explore the influ
ence of built environment on the spread of epidemics. Socioeconomic 
conditions of the two areas had similarities, but built environment 
differed significantly, especially in the aspects of population density and 
open space, leading to the variation of incidence rates. 

Table 7 showed the comparison of these two neighborhoods. Located 

in the east of Seattle, 98,005 is one of the best residential areas, where 
the ratio of open space is 3.01%. As for races, the people living in 98,005 
are primarily white, accounting for 50.6% of total population, then 
followed by Asian (38.2%) and black (3.4%). Its population density is 
slightly lower than the average of King County. The household income is 
high compared to the rest areas of King County. Similarly, the median 
household income of 98,109 is slightly higher than the average of King 
County, and the population is mainly white (68.9%), followed by Asian 
(19.5%) and black (3.6%). However, 98,109 has an extremely high 
population density, with an open space ratio of 0.9%. 

Having similarities in race and income, the difference in built envi
ronment of ZIP code 98,005 and 98,109 resulted in different incidence 
rates. With larger house size, more open space and lower population 
density, 98,005 had relatively low incidence rate of 8.1 per thousand 
people. By contrast, with smaller house size, less open space and higher 
population density, the incidence rate of 98,109 was 9.7 per thousand 
people, higher than the median of the whole county. The comparing 
results indicated that high population density might increase the infec
tion risk of diseases. With regard to housing, the crowd within house 
would accelerate the transmission of virus. Also, more open space was 
conducive to decreasing incidence rates. 

Table 5 
The PCC-MLR model results.  

MODEL Unstandardized coefficients Standardized coefficients t Sig. 

(constant) − 1.574  − 0.327 0.745 
Black_Afican_rate 25.950 0.301 3.882 <0.001 
American_indian_Alaska_rate 259.089 0.283 4.479 <0.001 
2_more_occupants_rate 410.663 0.200 3.032 0.003 
recreation_ground − 2451.470 − 0.201 − 3.489 0.001 
POI_office 12.013 0.096 1.622 0.110 
I_100,000–200,000_rate − 17.439 − 0.220 − 2.807 0.007 
PM2.5 1.604 0.188 2.806 0.007 
Adjusted R2 0.779     

Table 6 
The dynamic PCC-MLR model results.  

MODEL Unstandardized coefficients Standardized coefficients t Sig. 

(Constant) 2.814  6.326 <0.001 
Income_more_than_200,000_rate − 2.793 − 0.240 − 5.056 <0.001 
t 0.134 0.261 8.456 <0.001 
Income_100,000–200,000_rate − 3.971 − 0.218 − 4.565 <0.001 
nonfamily_alone_rate − 3.019 − 0.128 − 3.193 0.001 
American_indian_Alaska_rate 26.772 0.127 3.380 0.001 
Black_Afican_rate 3.474 0.175 3.991 0.000 
recreation_ground − 284.152 − 0.101 − 2.979 0.003 
2_more_occupants_rate 55.140 0.117 3.034 0.003 
Bedroom_2_rate − 2.107 − 0.149 − 3.052 0.002 
Units_5to9 2.939 0.084 2.017 0.044 
Adjusted R2 0.849     

Fig. 5. Results of the GWR using variables in the PCC-MLR model.  
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4. Discussion 

At the time of writing, it is nearly a year since the local outbreak of 
COVID-19 spread to a global pandemic. This infectious disease has 
brought severe consequences and challenges to the world. Although 
considerable research was undertaken in the latter half of 2020, there 
remains little knowledge about the spatial variation, transmission 
mechanisms and explanatory factors of COVID-19. The factors influ
encing the outbreak are largely complicated and unpredictable. On the 
one hand, it is influenced by socioeconomic structure and the built 
environment, including economic development, medical facilities, 
decision-making systems and living habits. On the other hand, unpre
dictable elements such as leaders’ political ideas and a specific time or 
location may also be influential. Moreover, these factors may be inex
tricably linked and exacerbated by each other, resulting in an accumu
lation of negative effects (Megahed & Ghoneim, 2020; Zhang, 2020). 

In this study, both non-spatial (MLR) and spatial (GWR) statistical 
models were used to analyze socioeconomic, meteorological, and built- 

environment factors affecting the spread of the epidemic. It was 
observed that race and income remain the two primary factors influ
encing numbers of confirmed COVID-19 cases. A greater proportion of 
ethnic groups such as Black or African Americans, American Indians and 
Alaska natives accounted for a higher rate of infection. When income 
exceeded the median of $100,000 per year, the incidence rate was 
relatively reduced. This shows that socioeconomic dimension remains 
one of the most significant factors affecting COVID-19. Furthermore, 
individuals’ behavior and activities largely determined the likelihood of 
becoming infected. Due to a lack of savings and alternative income 
sources, individuals in minority ethnic groups continued to commute to 
work during the epidemic, increasing the likelihood of infection. Groups 
with higher income levels typically had more alternatives: they could 
work from home and easily access necessary living resources without 
leaving their residences, greatly reducing the risk of infection. Previous 
research into COVID-19 and occupation supports this argument 
(Almagro & Orane-Hutchinson, 2020; Barbieri et al., 2020). 

The underlying factors are related to the built environment, in which 

Fig. 6. GWR coefficients of the variables in the PCC-MLR model.  
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density is a significant factor affecting the spread of the disease. Rec
reation ground and office POI influenced COVID-19 cases to different 
degrees. Recreation ground refers to open green spaces used for public 
leisure and entertainment. The model results indicate that a higher ratio 
of recreation ground corresponds with a lower incidence rate. This 
suggests that additional open spaces may help prevent the spread of 
disease and informs planners to effectively organize public areas to build 
a healthier city. Conversely, office POI density was positively correlated 
with incidence rates. This also agreed with the conclusions drawn from 
socioeconomic factors and strongly supported the effect of working from 
home on preventing viral transmission. 

Household structure also significantly influenced COVID-19 cases. At 
the neighborhood level, crowded households and family gatherings may 
exacerbate the spread of the epidemic (Almagro & Orane-Hutchinson, 
2020; Chen & Krieger, 2021). Based on modeling results, when room 
occupancy was greater than or equal to two, the incidence rate 
increased. The density of housing units was also positively correlated 
with the incidence rate, highlighting the impact of per capita housing 
area on maintaining social distance. 

Meteorological indicators showed little effect on incidence rates. 
Nevertheless, we observed that PM2.5 may accelerate transmission of 
the virus, as concluded in studies in the USA and Italy (Bashir et al., 

2020b; Coccia, 2020). Since meteorological conditions were considered 
to be stable throughout the study area, the models showed no apparent 
conclusion that could be developed in subsequent research. Further
more, we introduced time lag as a factor of the epidemic at monthly 
intervals. However, since policies and individuals’ activities may change 
over time, the time series indicator did not improve the results. There
fore, future studies could include dynamic factors such as mobility and 
policy-making. 

At the local scale, GWR models allow spatial comparison between 
different communities and neighborhoods. Residents in the suburbs, 
predominantly middle-income groups with low living density, large 
green areas, and good environmental conditions, reported fewer cases 
than residents in dense urban areas. As the GWR coefficient chart shows, 
the race coefficient influencing COVID-19 was the inverse of race dis
tribution. A higher proportion of ethnic groups showed a relatively 
lower coefficient of influence, indicating that race had a marginal effect 
on COVID-19. This phenomenon also occurred in the income coefficient. 
In low-income urban areas, income level had a greater influence on 
incidence rates than in the suburbs containing wealthier households. 
The influencing coefficient for POI density also varied by location. In the 
suburbs, POI density showed a positive correlation with incidence rates. 
In urban areas, however, the effect of density was relatively minor. This 
indicates that high-density built environments caused an increase in 
infection, although the impact was reduced as density increased. For 
household structure, the density of units and occupants per room were 
both positively correlated with incidence rates. However, this relation
ship was not obvious in dense areas. 

The above analyses may provide new perspectives on urban planning 
and design. Evidently, a dense built environment is associated with 
COVID-19, although the relationship is not as strong as previously 
assumed. This suggests that the effects of density are more apparent 
during the early stages of COVID-19, explaining why urban cores and 
mega cities get a head start on the spread of the disease (Carozzi & 
Felipe, 2020). As the epidemic expands, socioeconomic factors play an 
increasingly important role, and the impact of density on viral trans
mission becomes less apparent. Individuals’ lifestyles and behavior in 
built environments determine the likelihood of contact with the infec
tion. Nevertheless, the model results in this research suggest that there 
are several dimensions planners and designers could explore to promote 
resistance in cities. Creating more recreation ground and reducing POI 
density may effectively lower incidence rates. Moreover, it is feasible to 
avoid close contact between individuals by alleviating housing conges
tion, helping to block transmission within communities. Furthermore, 
by understanding the significance of everyday routines, planners and 
policy-makers must consider new ways of living, such as working from 
home, shopping online and exploring the virtual world, potentially 
reshaping future urban spaces. 

5. Conclusion 

This study drew initial conclusions regarding the association be
tween the built environment and the transmission of infection in the 
typically metropolitan area of King County, Washington. Integrating 
socioeconomic and meteorological factors, we focused on attributes 
related to the built environment, notably land use, POI distribution, 
population density, building concentration, road networks and house
holds. Conducting PCA-MLR, PCC-MLR and GWR models, we explored 
methods that could be used to study infectious diseases in urban areas. 

The main novel contributions of this paper are as follow: firstly, this 
study is among the first to consider spatial factors (notably building 
density, road networks, POI distribution, and land use intensity) in 
urban areas at the county level, filling a research gap in the built envi
ronment. Secondly, we built different models to describe the temporal 
and spatial distributions of the results. Finally, the analysis results may 
effectively guide sustainable development in cities, making the built 
environment more suited to human settlement. 

Fig. 7. Typical neighborhoods in Seattle, USA.  

Table 7 
Comparison of typical neighborhoods in Seattle, USA.  

Neighborhood 98,005 98,109 

Incidence rate (per 
1000 people) 

8.1 9.7 

Land area (sq km) 19.4 5.2 
Population 18,765 29,154 
Population density 

(people per sq km) 
967 5607 

Household units 22,673 45,802 
Occupancy of room 

(people per room) 
<1 <1 

Average room number 
(room per household) 

2.6 1.6 

Ratio of open space 
(area of open space/ 
area of land) 

3.10% 0.90% 

Median household 
income (dollar) 

84,774 77,034 

Races White (50.6%,) Black 
(3.4%), Asian (38.2%), 
American Indian (0.1%) 

White (68.7%), Black 
(3.6%), Asian (19.5%), 
American Indian (0.3%)  
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In conclusion, the built environment and the individuals who 
interact with it both impact COVID-19 cases. The results from King 
County, Washington, demonstrate that factors such as income and race 
are more influential than the physical environment. The initial peak of 
the outbreak led to much reflection on large cities such as New York 
City, which accounted for one-fifth of COVID-19 cases and deaths in the 
United States. Large cities such as London and Madrid were also center 
in which COVID-19 cases were highly concentrated. The inability to 
react to the pandemic in high-density built environments has been 
questioned by many and it has been suggested that the era of megacities 
is over (Alirol et al., 2011; Carozzi & Felipe, 2020; McCunn, 2020; 
Zhang, 2020). However, analysis of King County, Washington demon
strated that the facts were more complicated than previously asserted. 
Although high density was associated with elevated incidence rates to a 
degree, human behavior and socioeconomic factors played a detrimental 
role in the spread of COVID-19. Globally, residents behaved differently 
in face of the epidemic (including within similar built environments) 
resulting in different situations. Moreover, when analyzing the impact of 
human behavior on infection cases, working from home and maintain
ing social distance were found to be conducive to epidemic control. This 
also demonstrated that behavioral control measures were effective in 
preventing the spread of COVID-19. When confronting infectious dis
eases, management may prove to be more effective than urban planning, 
questioning conventional metropolitan planning to some degree. This 
was also reflected in the epidemic of areas with different density. 
Although a high-density built environment, Hong Kong employed timely 
and strict control measures to effectively contain the epidemic in a 
relatively short time. However, as an influencing factor, control policies 
were difficult to quantify and therefore not included in this study. 
Nevertheless, this topic should be promoted in future research. 

Our study suggests that builders and administrators of city should 
rethink the impact of built environment on public health. It is not 
rational to immediately support low density and suburban living or 
totally oppose to high density and big cities. Evidence from King County 
implies that human behavior might be the key factor influencing 
epidemic diseases. People with different socioeconomic backgrounds 
show different behavior tendency. Built-environment-related indicators 
greatly affect activity density and preference. Meteorological factors 
such as temperature, wind, humidity and air quality are directly related 
to health and comfort. By controlling built environment factors like open 
space, POI density and room occupancy, city constructors could effec
tively guide human behavior, providing more chance for outdoor ac
tivities, avoiding crowd gathering around high-risk areas and reducing 
human contact. Also, policy-making could bring great gains for public 
health. All of the evidence shows the great potential of planning and 
control in urban areas. Though we have witnessed the vulnerability of 
metropolitan area during the pandemic, it is hasty to conclude that high 
density leads to high incidence rates. Considering the impacts of built 
environment are double-edged and indirect, this study calls for more 
research focusing various cases and factors to explore the complex 
influential mechanism of built environment on public health. 
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